纳米 Ni-Co-B 非晶态合金抗氧化行为 的原位 XPS 研究

戴维林, 曹 勇, 范康年, 邓景发

(复旦大学化学系,上海市分子催化与创新材料实验室,上海 200433)

摘要 采用原位 XPS 手段研究了纳米非晶态 N i⁻Co⁻B 合金中 B 和 Co 的抗氧化行为、表面组成与氧化处理 条件之间的关系以及各元素含量随深度的变化趋势 结果发现,氧优先氧化表面的元素 B 物种,在元素态 B 被完全耗尽后才开始氧化表面的元素态 Co 物种,在元素态 B 和 Co 均被完全氧化后,元素态 N i 才开始被氧 化 另外,研究还发现,在氧化过程中, B 和 Co 的氧化物具有在表面富集的倾向 正是由于 B 和 Co 的优先 被氧化才保护了催化加氢反应中的活性中心——元素态 N i 关键词 N i⁻Co⁻B 非晶态合金;抗氧化行为;原位 XPS **中图分类号** O 643 31, O 657. 99 **文献标识码** A **文章编号** 0251-0790(2003)03-0473-04

纳米非晶态合金作为一种重要的新型催化剂材料,由于其具有比传统加氢催化剂优异得多的催化 性能,已应用于许多化学反应^[1~6].尤其是非晶态N i⁻Co⁻B 合金,其对苯加氢具有特殊的活性和选择 性^[7].而且该催化剂的寿命比R aney N i 长得多,同时抵御中毒物质的能力也较强^[8,9].已经采用了多种 物理化学手段对该类型催化剂的特异性能进行了表征,并关联了其结构和反应活性^[10~15].一般认为, B 和 Co 从电子效应和结构效应两个方面影响了反应的活性中心——元素态N i 但是,对该催化剂相 对于普通N i 催化剂的长寿命和抵御毒物的能力则未能给予合理的解释

本文采用原位XPS 手段研究了非晶态N i-Co-B 合金与微量氧气反应的详细过程,发现了氧对该合 金中不同元素的氧化次序,合理地解释了B 和 Co 对N i 的保护作用,并首次得到该催化剂抗氧化能力 的直接证据

1 实验部分

11制备

样品的制备参照文献[6]的化学还原法合成:将一定量 2 0 mol/L 的 KBH4 水溶液滴入已配制好的醋酸镍和醋酸钴的混合水溶液中(初始镍钴摩尔比为 1/1),KBH4 和总金属离子的摩尔比为 5/2 将整个溶液置于冰水浴中,得到的黑色沉淀物分别用水和乙醇洗涤数次,并保存于无水乙醇中备用

12 原位 XPS 测试

原位 XPS 测试在美国 PH I 公司的 PH I 5000C ESCA System 型 X 射线光电子能谱仪上进行 A 1 阳极靶, 高压 14 kV, 功率 250 W, 仪器通能设在 93.9 eV.

首先将非晶态N i⁻Co⁻B 合金样品压成直径 1 cm 的圆片,在预处理室(1.3×10⁻⁴ Pa)脱气处理 8 h, 再将样品原位转移至分析室中进行氧化处理和原位 XPS 测试 通过电阻方式对样品托进行加热,温度 由铼钨热电偶示出

实验所用的氧气和氩气均为高纯气体,未经进一步纯化处理 实验时分析室真空度优于 1.3×10^{-7} Pa 氩刻时离子束能量 3 keV,激发电流 10 mA, 氩气压强 6.5×10^{-5} Pa

收稿日期: 2002-04-23.

基金项目: 国家重点基础研究发展规划项目(批准号: G2000048009)资助

联系人简介: 戴维林(1969年出生), 男, 博士, 副教授, 从事原位谱学表征及多相催化反应研究 E-mail: w klai@fudan edu cn

2 结果与讨论

2.1 表面元素的化学状态和组成与氧处理条件的关系

XPS 分析发现, 新鲜的非晶态N i⁻Co⁻B 合金样品表面主要存在元素态的N i, Co 以及B, 同时还存 在一定量的氧化态 B, 这主要是采用化学还原法的结果^[1]. 此时表面的元素组成近似为 N i^s4 s^CO²⁴ s^B20 4, N i 和 Co 均以元素态存在, 而B 为元素态和氧化态两种状态共存, 二者的摩尔比为 39 5/60 5. 表面经氩刻蚀 30 m in 后, 组成变为N i^s0 7^CO³¹ 7^B17 6, Co 含量明显上升, 表明该样品表面为 N i 和B 富集 另外, 氩刻蚀之后, 元素态与氧化态B 的摩尔比变为 36 5/63 5. 图 1 (A) 为不同氧处理 条件下表面 B ¹^s 的 XPS 谱图 随着样品温度升高和氧气暴露量的增加, 表面B 元素的状态发生了明显 变化 在 200 暴露 2 × 10⁵ L 的O₂ 后, 表面的 n (B⁰) /n (B³⁺) 从 36 5/63 5 降至 10 4/89 6. 进一步提 高处理温度或增加氧暴露量, B⁰ 含量进一步降低, 直至 350 时彻底消失

在上述测量过程中,同时观测了Ni和Co的2p轨道的XPS谱图变化[图1(B)和(C)]Ni和Co除了峰强度下降外,均保持其元素态,直到B的元素态完全消失为止 该现象表明,非晶态Ni-Co-B 合金样品表面的元素态B 消失之前,Ni和Co均保持其元素态,即氧气的存在只是消耗了元素态B,在元素态B 耗尽之前,氧气不氧化Ni和Co

表面的元素组成在该氧化过程中也发生了急剧变化 对图 1 进行定量分析可以看出, B 的总含量随着氧化反应的进行不断上升, 而N i 和 Co 的含量均稳步下降 对照新鲜氩刻蚀后样品的表面组成, 经 200 , 2 × 10⁵L 的O₂ 处理 1 次后的样品(图 1 谱线 *d*)的组成为N i $_{9.9}$ CO_{28 s}B_{21 6}; 而处理 2 次的样品 组成已变为N is 5CO₂₅ $_{9.35}$ 6 继续升温到 350 , 用 2 × 10⁵L 的O₂ 处理 1 次就可使表面的元素态B 全 部消失, 此时表面组成N in 1CO₉ $_{9.75}$ 0 与样品的原始组成有较大差别 这说明在氧化反应发生后, B 在 样品表面急剧富集, 直到样品表面没有元素态B 为止, 表明该富集为一种氧化富集

2 2 氧化后样品随时间而改变的动态分析

在上述样品表面的元素态B 全部消失之后,为研究体相中元素组成的变化,对其进行了深度分析. 结果发现,随着氩刻蚀时间的延长,除了总的B 含量愈来愈小之外,并未检测到元素态B 的存在 表明样品中所有的元素态B 在 2 1 节中所述的处理过程中均被氧化了. 另外,在氩刻蚀过程中N i 和 Co 始终保持其元素状态,而且含量比愈来愈高(图 2),开始时随着氩刻蚀时间的延长,元素组成发生 剧烈变化. 氩刻蚀 30 m in 时, B 的相对含量从开始时的 80% 左右降低到 34% 左右,而N i 和 Co 则分别 从 10% 上升到 33% 左右. 随着氩刻蚀时间的延长,表面组成的变化相对比较缓慢,再经过 120 m in 氩 刻蚀后,表面的元素组成最终变为N is a CO42 aB 20 4. 进一步氩刻蚀对表面元素组成的影响不大,说明氩 刻蚀 150 m in 后的样品组成已趋于稳定,不再随深度变化而变化

将该组成与图 1 中谱线 b 和 g 的组成对比后可以发现,随着元素态 B 的被氧化, N i 和 Co 的相对 组成也发生了变化 从氩刻蚀初期(图 1 谱线 b)的 50 7/31.7 到元素态 B 完全消失后的 11.1/9.9,直

至氩刻蚀 150 m in 后的 37. 6/42 0. 显然 N i 和 Co 的相对含量在这一过程中发生了逆转,亦即在该氧 content(%)化过程中Co 也在表面发生了富集

2 3 Co的抗氧化行为

对上述氩刻蚀后的样品再进行氧化处理,结果 发现元素态B 完全消失后的样品变得较容易被氧 气氧化,元素态B存在时,即使于350 用0,处 理,也不能氧化金属Ni和Co,而一旦元素态B消 失,则只需在100 处理、即可使样品发生明显氧 Fig.2 化 即元素态B 的存在使非晶态N irCo-B 合金样品 抗氧化能力大大提高 而一旦元素态B 消耗完之 后,整个样品均对氧气比较敏感,此时样品的氧化 还原性质与普通的金属Ni和Co的性质比较相近

A r⁺ sputtering conditions 6 5 × 10⁻⁵ Pa, 3 0 keV, 10 mA; sputtering area: 4 mm × 10 mm. Relative content: molar ratio, determined by quantitative XPS analysis

图 3 为该样品在元素态 B 完全消失后样品表面 N i 和 Co 2p 轨道的 XPS 谱图随氧处理条件的变化过 程 在 100 时, 10^5 L的O₂就可以使表面的元素态Co发生明显的氧化, 导致二价氧化物的出现 继 续升高处理温度(图 3 谱线 c)或延长处理时间(图 3 谱线 d), Co 即继续被氧化直至被全部氧化成氧化 物 而此时对应的Ni才被氧化一小部分,只有升高处理温度到 150 ,才可使Ni被明显氧化,生成 N i O_3 , 说明元素态 Co 的存在可对元素态 N i 起到保护作用

根据 XPS 的定量分析结果, 表面Ni和Co的相对含量也在上述氧化处理过程中发生明显变化, 从 开始的N isr。CO42 0B 20 4变成最终的N izs 0CO51 xB 23 s 表明与B 相类似, Co 在该处理过程中也发生了表面 氧化富集

24 讨 论

通过以上实验结果可以发现,在非晶态N i-Co-B 合金样品中,元素态的B 和 Co 都可对N i 起到保 护作用, 这是该样品具有抗氧化能力的原因 对这种特殊的抗氧化能力, 可以从以下几个方面来分析; (1) 元素态 B 的存在使该样品相对于无元素态 B 时可以抵御苛刻得多的氧处理条件; (2) 体相的元素 态 B 在表面发生氧化时会向表面迁移,并与表面的氧发生作用,从而使表面元素态 N i 免受氧化 从 2 1 节的实验结果可以发现,这种迁移速度相当快 因为在所有的元素态B 消失之前,金属Ni和Co 都不会被氧气氧化; (3)相对于表面的元素态 B 来说,总的体相元素态 B 量较大,这也是含元素态 B 的非晶态样品可以抵御较多氧气的原因: (4) 金属N i 是许多加氢反应的活性中心, 体系中微量的氧是 使催化剂最终失活的主要原因,而元素态B 的存在可以大大延缓这一过程,因为所有的毒物氧均首先 被元素态B 所消耗,这一过程类似于牺牲阳极的金属腐蚀防护中的情形,(5) 非晶态N i-Co-B 合金样 品中的元素态 Co 也能优先于N i 被氧化、从而进一步延长了活性中心N i 的使用寿命

参考文献

- [1] Shen J., LiZ, Yan Q. et al. J. Phys Chem. [J], 1993, 97(32): 8 504-8 511
- [2] Brown C. A. J. Org. Chem. [J], 1970, 35: 1 900-1 905
- [3] Deng J. F., Chen H. Y., Bao X. H. et al. Appl Surf Sci [J], 1994, 81: 341-346
- [4] HuZ, ShenJ., ChenY. et al. J. Non-Cryst Solids[J], 1993, 159(1-2): 88-91
- [5] Deng J. F., Chen H. Y. J. Mater Sci Lett [J], 1993, 12: 1508-1510
- $[\ 6\]$ Luo H. S , Li H. X , Zhang L. . Chem. Lett [J], 2001, (5): 404–405
- [7] Deng J. F., Li H. X., Wang W. J. Catal Today [J], 1999, 51(1): 113-125
- [8] Wang H. M., Yu Z B., Chen H. Y. et al. Appl Catal A: General[J], 1995, 129: L143-L149
- [9] YuZ B., Qiao M. H., LiH. X. et al. Appl Catal A: General[J], 1997, 163: 1-13
- [10] Shen B. R., Wei S. Q., Fan K. N. et al. Appl Phys A: Mater [J], 1997, 65(3): 295-299
- [11] SHEN BairRong(沈百荣), FANG ZhirGang(方志刚), FAN Kang-Nian(范康年) et al. A cta Chimica Sinica(化学学报)[J], 1999, 57(4): 366-371
- [12] ZHANG Ju(张 菊), ZHENG Xiao Ming(郑小明). A cta Physico Chimica Sinica(物理化学学报)[J], 1995, 11(2): 113—117
- [13] ZHANG Ju(张 菊), ZHENG Xiao Ming(郑小明), ZHOU Lie-Hua(周烈华). Chem. J. Chinese Universities(高等学校化学学报) [J], 1997, 18(1): 131—133
- [14] LIJiang(李 江), Q AO M ing-Hua(乔明华), DEN G Jing-Fa(邓景发). Chem. J. Chinese Universities(高等学校化学学报)[J], 2001, **22**(6): 1 022-1 024
- [15] WANG Xiao-Guang(王晓光), YAN W en-Sheng(闫文胜), ZHONGW en-Jie(钟文杰). Chem. J. Chinese Universities(高等学校化 学学报)[J], 2001, 22(3): 349—354

In situ XPS Studies on the Anti-oxidation Effects of Nano-sized Ni-Co-B Amorphous Alloy

DA IW eiL in^{*}, CAO Yong, FAN Kang N ian, DENG Jing Fa

(Shanghai Key Laboratory of Molecular Catalysis & Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China)

Abstract In situ XPS was used to study the anti-oxidation behavior of Co and B in nano-sized N i-Co-B amorphous alloy and the relationship between the surface contents and the treating oxidation conditions by O_2 as well as the changes of the surface elemental contents with the depth of the sample It was found that the elementalB was preferably oxidized, then the elementalCo could be oxidized A fter all elementalB and Co were used up, the surface elementalN i began to be oxidized by O_2 In addition, the oxides from B and Co were inclined to enrich on the surface after the oxidation. It was the preferential oxidation of B and Co that protected the N i active centers from oxidation during the catalytic hydrogenation.

Keywords Amorphous Ni Co B alby; Anti-oxidation behavior; In situ XPS

(Ed : V, X)