新型 WO₃/HMS 催化剂的制备及其对环戊烯选择 氧化反应的催化性能

杨新丽, 戴维林, 徐建华, 陈 浩, 曹 勇, 范康年 (复旦大学化学系,上海市分子催化和功能材料重点实验室, 上海 200433)

摘要:采用草酸络合方法将 WO₃ 固载到六方介孔全硅分子筛 HMS 上,制得新型 WO₃/HMS 非均相催化剂.利用 SEM, TEM, N₂ 吸附, X RD 及激光拉曼光谱等手段对催化剂进行了表征.研究了催化剂在环戊烯选择性氧化合成戊二醛反应中的催 化性能.结果表明,在 WO₃/HMS 催化下环戊烯和H₂O₂ 的转化率均可达100%,戊二醛的选择性可达72%.WO₃ 以高分散状 态存在于催化剂表面.单次反应后钨的溶脱量(5.5 μ_{g} /ml)很小,对反应几乎没有影响.催化剂具有较高的稳定性.可以重复 套用 6 次.失活后的催化剂可通过简单焙烧的方式再生.

关键词:氧化钨,六方介孔全硅分子筛,负载型催化剂,环戊烯,选择性氧化,过氧化氢,戊二醛 中图分类号:0643 文献标识码:A

Preparation of Novel WO₃/HMS Catalyst and Its Catalytic Performance for the Selective Oxidation of Cyclopentene

YANG Xinli, DAI Weilin^{*}, XU Jianhua, CHEN Hao, CAO Yong, FAN Kangnian

(Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China)

Abstract: The novel heterogeneous WO₃/HMS catalyst was prepared by immobilization of tungstic acid on hexagonal mesoporous silica (HMS) by a special method using oxalic acid as the complexing agent, and was characterized by means of SEM, TEM, N₂ adsorption, XRD and laser Raman spectroscopy. The influences of Si/W molar ratio on the catalytic performance of WO₃/HMS, WO₃/SiO₂ and WO₃/MCM-41 for the selective oxidation of cyclopentene to glutaraldehyde under mild conditions were investigated. The as-prepared WO₃/HMS catalyst with a Si/W molar ratio of 30 showed excellent catalytic activity and selectivity. The conversions of both cyclopentene and H₂O₂ were near 100 % and the selectivity for glutaraldehyde reached 72%, which are much higher than those over the WO₃/SiO₂ catalyst and even exceed those over the homogeneous tungstic acid catalyst. The WO₃/HMS catalyst remained similar morphology and hexagonal mesoporous structure as pure HMS. The highly dispersed WO₃ on the HMS surface was identified as the active phase of the catalyst. The WO₃/HMS catalyst was very low and had little effect on the catalytic performance. In addition, the WO₃/HMS catalyst was very stable and could be reused for at least six times. The deactivated catalyst could be regenerated by simple calcination.

Key words: tungstic oxide, hexagonal mesoporous silica, supported catalyst, cyclopentene, selective oxidation, hydrogen peroxide, glutaraldehyde

收稿日期: 2004-07-26. 第一作者: 杨新丽, 女, 1976 年生, 博士研究生.

联系人: 戴维林. Tel: (021)65643792-6; Fax: (021)65642978; E-mail: wldai @fudan.edu.cn.

基金项目:国家重点基础研究发展规划(2003CB615807)、上海市科委基础研究重点项目(02DJ14021)和上海市教委曙光计划 (02SC04)联合资助项目.

1992 年美国 Mobile 公司的科学家成功地合成 了 M 41S 系列介孔分子筛^{1]}.该类分子筛具有较高 的比表面积和规整的孔道结构,自问世以来一直受 到人们的关注, 尤其是它在催化领域的应用已成为 一个研究热点. Kozhevnikov 等² 以烷基胺代替传 统的季铵盐为模板剂在室温下合成了介孔全硅分子 筛(HMS). 这是一种六方长程有序排列的中孔分子 筛.具有很大的表面积和孔隙率.孔径均匀且分布较 窄,正交垂直部分的孔径大于 1.2 nm. HMS 具有较 高的吸附容量、热稳定性和较短的孔道长度、特别有 利于反应物分子和产物分子的扩散,因此很适合作 催化剂的载体^[3~5].

戊二醛是一种重要的精细化学品,被广泛用于 消毒、皮革、油田及造纸等领域,在我国戊二醛几乎 全部依赖进口. 目前戊二醛的生产均采用丙烯醛路 线,工艺复杂(多步法),条件苛刻,原料昂贵,成本很 高,这些极大地限制了它的大规模应用. Dai 等⁶⁷ 成功地开发了以环戊烯为原料,以双氧水为氧化剂, 以均相钨酸为催化剂的一步法合成戊二醛的路线, 其工艺简单,有效地降低了生产成本. 但是由于均 相催化剂的分离等问题,该工艺至今尚未工业化.尽 管关于均相催化剂的固载化方法已有许多报 道^[8~13],但由于成本及操作等问题,相关的工作仍 在进行中.

本文采用草酸络合法将 WO3 均匀地固载到 HMS分子筛上, 合成了新型WO3/HMS催化剂, 避 免了以钨酸铵或钨酸钠为前驱物所必须经过的烧铵 或除钠等过程,既减少了活性物种的损失,又最大限 度地保持了介孔材料原有的特殊结构. WO₃/HMS 催化剂在环戊烯选择性氧化反应中表现出优异的催 化性能. 采用 N₂ 吸附, XRD, SEM, TEM 及激光拉 曼光谱等手段对固载后的多相催化剂进行了表征, 并将催化剂的结构参数与反应性能进行了关联,探 讨了其实际应用的可能性.

实验部分 1

1.1 HMS的合成及WO3/HMS催化剂的制备

实验中所用的50%H₂O₂水溶液、环戊烯(CPE, Fluka产品, > 99.9%)、正硅酸乙酯(TEOS)、无水 乙醇、草酸和叔丁醇均为市售分析纯试剂. 十二胺 (DDA)和黄钨酸(WO3°H2O)为化学纯试剂.

HMS 分子筛的合成详见文献[14]. 原料配比 DDA :EtOH :H-O :TEOS 摩尔比为 0.27 9.09 29.6 ?1994-2016 China Academic Journal Electronic Pul

·1.0. 室温下将 DDA, EtOH 和 H₂O 混合, 搅拌使之 成为澄清的溶液,在剧烈电动搅拌下将 TEOS 滴加 至溶液中,得到白色胶状混合物,待 TEOS 加完后 继续搅拌 24 h,然后过滤出白色固体,干 120 ℃烘 干,再在600[°]空气中加热2h以除去模板剂 DDA, 即得HMS分子筛.

采用钨酸的草酸配合物浸渍法制备 WO3/HMS 催化剂. 按 H₂C₂O₄/WO₃ [•]H₂O 摩尔比为 5 的比例 将黄钨酸溶于90 °C的草酸水溶液中,然后将一定量 的 HMS 载体分散到此溶液中, 在电磁搅拌下将体 系中的大部分水缓慢蒸干,然后于 120 ℃进一步蒸 干水分,最后在空气中 600 ℃焙烧 2 h,即得 WO₃/ HMS 负载型催化剂.

1.2 催化剂的表征

采用美国 Micromeritics TriStar ASAP 2000 型 自动吸附仪测定样品的比表面积和孔径分布,样品 于 250 [℃]进行预处理, -196 [℃]进行 N₂ 吸附. 用德 国 Bruker D8 Advance 型 X 射线衍射仪测定样品的 晶相结构, Cu Kα辐射, 管电压 40 kV, 管电流 40 mA. 用荷兰 Philips XL 30 型扫描电镜和日本 JOEL JEM 2010 型透射电镜观测样品的微观结构.采用 Jarrell-Ash Atom Scan 2000 型等离子体光谱仪测定 样品中钨的含量和反应后溶液中钨的溶脱量,正向 功率 1000 W, 冷却气、辅助气和载气均为 Ar, 流速 分别为 160, 0.4 和 0.71 ml/min, 溶液提升量为 2.6 ml/min, 观察高度为 16 mm. 采用法国 Super-Labram Raman 光谱仪测定样品的拉曼光谱,分辨率 小于 2 cm⁻¹, 激光能量为 15 mW, He-Ne 激光器, 激 光波长为 632.817 nm.

1.3 催化剂的活性评价

环戊烯催化氧化反应在密封的圆底烧瓶中进 行. 向 100 ml 圆底烧瓶中加入一定量的催化剂、50 ml 叔丁醇、5 ml (56 mmol)环戊烯和 7 ml (112 mmol)的 50 %H2O2 水溶液, 35 ℃下搅拌反应 24 h. 用上海分析仪器厂 GC-102 型气相色谱仪分析环戊 烯的含量,不锈钢色谱柱(4 m× o. d 3 mm),填充 102 白色硅烷化担体(60~80 目)担载的 10%聚乙 二醇 20M, TCD 检测器, H₂ 为载气, 环戊烷为内标. 采用上海分析仪器厂 GC-122 型气相色谱仪分析产 物的分布,不锈钢色谱柱(2 m× o.d 3 mm),填充 101 白色硅烷化担体(60~80 目)担载的 SE-30 (10%)+PEG-20M (7%), FID 检测器, 用外标法测

- 2 结果与讨论
- 2.1 催化剂的表征结果

2.1.1 催化剂的形貌

图 1 示出了 WO₃/HMS 催化剂的电镜照片. SEM 结果表明, WO₃/HMS 催化剂呈现出与纯 HMS 相似的形貌. 在 WO₃ 负载量较低时未观察到 WO₃ 的团簇, 表明 WO₃ 均匀地分散在HMS 载体的 表面. TEM 照片清楚地显示出 HMS 的特征六方孔 道结构, 说明在一定的负载量范围内, HMS 上的 WO₃ 没有破坏 HMS 的特征六方中孔结构.

图 1 WO₃/ HMS催化剂的 SEM(a)和 TEM(b)照片 Fig 1 SEM (a) and TEM (b) images of WO₃/ HMS (n(Si)/n(W)= 30) catalyst (HMS — Hexagonal mesoporous silica)

2.1.2 催化剂的物相

图 2 (a) 是 HMS 载体及不同 WO₃ 负载量的 WO₃/HMS 催化剂样品的小角 XRD 谱.可以看出, HMS在 $2\theta = 2.3^{\circ}$ 处有一个非常强的衍射峰,这与 文献[15]的报道相一致.将 WO₃ 负载到 HMS 上 后,随着 WO₃ 负载量的增加,HMS(100)晶面的衍 射峰强度降低,表明 WO₃ 含量较高时样品中孔结构 的规整性遭到一定程度的破坏.在 Si/W 比为 20 时,HMS分子筛的(100)特征峰已变得不太明显,更 高的钨含量会导致 HMS 特征结构的完全崩塌.在 样品的大角 XRD 谱(图 2(b))中,当 Si/W 比大于 20 时未发现有 WO₃ 晶相生成,说明 WO₃ 是高度分 散在 HMS 载体表面的.这一方面是由于 HMS 的 比表面积比较大,另一方面是由于 HMS 的孔径较 大,为 WO₃ 分子的有效进入提供了一个畅通的孔 道.负载 WO₃ 前后 HMS 的孔径几乎没有发生变化 (均为 2.6 nm),表明大部分 WO₃ 分散于载体的孔 外表面,只有少部分进入内表面.

Fig 2 Small angle (a) and high angle (b) XRD patterns of different WO₃/HMS catalyst samples

 (1) HMS; (2) Crystalline W 03; (3) ~ (6) W 03/ HMS with n(Si)/ n(W)= 20, 30, 40 and 50, respectively shing House. All rights reserved. http://www.cnki.net

2.1.3 催化剂的激光拉曼光谱

图 3 是不同 WO₃/HMS 催化剂样品的激光拉 曼光谱. 可以看出, 在反应前的样品上未检测到晶 ∞ WO₃ 的拉曼峰,表明 WO₃ 高度分散在 HMS 的 表面, 未形成明显的晶态 WO3 颗粒. 反应若干次(6 次以上)后,催化剂活性明显下降,此时催化剂表面 有较大的晶态 WO3 颗粒生成.这可能是由于在反 应过程中催化剂表面的 WO3 与过氧化氢形成过氧 钨酸活性物种,该物种随反应时间的延长会发生迁 移和聚集,并最终导致晶态 WO3 的生成. 失活的催 化剂在空气中 600 ℃焙烧 2 h 后, WO3 又以无定形 状态重新分散在 HMS 表面, 而且催化剂的活性又 得到恢复. 这种聚集的物种在焙烧条件下可以重新 分散的现象文献上有过很多报道,即在一定温度下 焙烧时,聚集态的金属氧化物或盐在大比表面载体 上有自发形成单层分散状态的倾向^[16,17],这是由于 这种单层分散状态在热力学上是稳定的.因此,钨 物种在 HMS 表面的高度分散可能是导致催化剂具 有较高活性的主要因素,这些高度分散的 WO3 可能 正是该选择氧化反应的活性中心. 由图 3 还可以看 出,过高的焙烧温度(如 700 $^{\circ}$)不利于 WO₃ 在 HMS 表面的分散,此时 WO3 以较大颗粒的聚集状 态存在.

(n(Si)/n(W) = 30) catalyst samples

(1) Before reaction, (2) After reaction 6 times, (3) After regeneration by calcination in air at 600 °C for 2 h,
(4) Calcination in air at 700 °C for 2 h

2.2 催化剂的催化性能

2.2.1 不同催化剂的催化活性

不同催化剂样品的物化参数及其对环戊烯氧化 反应的催化性能列于表 1. 可以看出, 纯的中孔 SiO_2 没有催化活性, 晶态的 WO₃ 也没有催化活性, 而水合 WO₃(钨酸)却有很高的催化活性. 烯烃选择 性氧化用 TS-2 催化剂对环戊烯的氧化具有一定的 催化活性,但是环戊烯的转化率非常低,这可能是由 于 TS-2 孔径较小, 不利于环戊烯分子在孔道中扩散 的缘故^[18,19].由表 1 还可以看出, WO₃/HMS 的催 化性能比 WO₃/MCM-41 好,其戊二醛的产率较高, 这可从 HMS 和 MCM-41 载体不同的内部结构来解 释. M CM-41 的合成遵循液晶模板机理[2q],其结构 有序性好,孔道的长度(100~200 nm)较长^[14],使较 大的反应物分子(如环戊烯)和较大的溶剂分子(如 叔丁醇)不易在孔道中扩散.因此,尽管 MCM-41 的 比表面积比干凝胶法制备的 SiO2 的比表面积大得 多,孔径也相应较大且分布更窄,但戊二醛的产率并 没有很大的提高. HMS 的合成机理与 M CM -41 相

表 1	不同催化剂样品的物化参数及其对环戊烯
	氧化反应的催化性能

Table 1 Physico-chemical parameters of different catalyst samples and their catalytic performance for oxidation of cyclopentene (CPE)

		2 1					
S	Α	Pore size	$X/ \frac{0}{0}$		S/	S / %	
Sample	m^2/g	(nm)	CPE	H_2O_2	GA	CPO	
SiO ₂	634	2.4	0	0	0	0	
TS-2	487	0.5	4. 0	8.6	2.5	81	
$WO_3^{\circ}H_2O^a$	_	—	100	100	62	0. 7	
WO ₃ ^b	_	—	1. 5	0.1	0	0	
M CM-41	1050	2.5	0	0	0	0	
HMS	950	2.6	0	0	0	0	
WO_{3}/HMS^{c}	880	2.6	100	100	72	0.6	
WO 3/ M CM- 41°	957	2.4	100	100	66	0.9	
WO_3 / SiO_2^d	522	1. 5	100	100	60	1. 6	
WO_3/SiO_2^e	495	1. 3	1. 1	0	0	0	

Reaction conditions: 1. 6 g catalyst (the WO₃ content (12.8%)) is the same for all the W-containing catalysts), 5 ml CPE, 7 ml 50% H₂O₂, 30 ml *t*-BuOH, θ = 33 °C, *t*=24 h.

- GA Glutaraldehyde, CPO Cyclopentene epoxide.
- ^a Homogeneous catalyst.
- $^{\rm b}$ C rystalline WO $_3$ obtained from WO $_3\,^{\circ}{\rm H_2O}$ calcined at 400 $^{\circ}{\rm C}$ for 6 h.
- ^c n(Si) / n(W) = 30.
- $^{\rm d}\,$ Prepared by xerogel method.
- $^{\rm e}$ Crystalline WO_3 dispersed on SiO_2 by calcining WO_3/SiO_2 at 700 $^{\circ}\!\!{\rm C}$ for 12 h.

似,但 HMS 所用的表面活性剂是 C₈ ~ C₁₈的中性 胺,胶束通过氢键与硅酸盐作用^[14],所形成的孔道 排列比较"杂乱",并且孔道的长度也比 M CM-41 短 得多,一般只有 50~90 nm^[14],这样更有利于大的 溶剂分子及反应物或反应中间体分子的扩散,所以 HMS比 MCM-41 更适合作液相反应催化剂的载 体^[21].由表 1还可以看出,孔径大的催化剂上戊二 醛的产率相对较高,这可能是由于大的孔道有利于 反应物分子在催化剂活性中心上吸附,以及产物分 子从活性中心上脱附并扩散.在经过优化的催化剂 上,戊二醛的产率达到了 72%,该产率甚至超过了 相同的条件下传统的均相钨酸催化剂上的产率,因 此催化剂具有较好的工业应用前景.

高度分散的 WO₃ 物种是催化剂对过氧化氢选 择性氧化环戊烯反应具有较高活性的必要条件. 晶 态的 WO₃ 之所以对反应没有催化活性, 是因为 WO₃ 晶体颗粒不能很好地与 H₂O₂ 作用, 也不能把 H₂O₂ 中的活性氧传递给环戊烯. 要使 WO₃ 具有催 化活性, 必须将 WO₃ 高度分散在 SiO₂ 载体上. 高 度分散的 WO₃ 易于和过氧化氢形成过氧钨酸物种, 后者与烯烃中的碳碳双键发生作用. 如果 WO₃ 未 在载体上高度分散, 而是以较大的晶态颗粒状态存 在, 如经过高温 (700 ℃以上)处理后, WO₃ 在 SiO₂ 载体表面全部聚集形成晶态, 则催化剂的活性几乎 完全丧失.

2.2.2 Si/W比对 WO₃/HMS 催化性能的影响

由表 2 可知,随着 Si/W 摩尔比的增加,WO₃/ HMS 催化剂单位活性中心上反应物的转化数增大, 表明 WO₃ 物种的高度分散有利于催化剂活性的提 高.最佳的 Si/W 摩尔比是 30,即 WO₃ 的负载量为 12.8%,此时不仅环戊烯 100%转化,而且戊二醛的

	影响
--	----

Table 2 Influence of Si/W molar ratio on the performance of WO₃/HMS catalyst

	-				
$n^{(Si)}$	TOF	Χ/	%	S(GA)	Y (GA)
n(W)	$(10^{-3}/s)$	C PE	H_2O_2	%	%
20	0.59	100	100	71	71
30	0.83	100	100	72	72
40	1. 04	96	98	62	61
50	1.18	89	95	61	58

The reaction conditions are the same as in Table 1.

TOF — M oles of CPE converted on per mole WO_3 per second.

产率达到最高值(72%).更高的 WO₃ 负载量将导 致介孔催化剂的特征结构消失,催化剂不可以再标 记为 WO₃/HMS,而且活性也显著下降.当 Si/W 比 较高时,反应物的转化率偏低,导致戊二醛的产率较 低,戊二醛的选择性也下降.这可能是由于部分载 体表面未被活性物种覆盖,或者是由于低负载量时 催化剂表面活性相发生了改变.

2.2.3 催化剂的套用及再生

表 3 列出了 WO₃/HMS (Si/W 摩尔比为 30)催 化剂的重复使用情况.催化剂可重复使用 4 次,当 第 5 次使用时,其活性明显下降,必须进行再生.将 失活的催化剂在空气中于 600 ℃焙烧,可使晶化的 WO₃ 以无定形状态重新分散在载体上,也可除去覆 盖在催化剂上的有机物,从而恢复其部分催化性能. 但再生后的催化剂只能再使用 2 次,第 3 次使用时 活性显著下降.因此,WO₃/HMS 催化剂可以套用 6 次.虽然该结果离实际工业化还有一定的距离,但 与不能回收利用的均相钨酸催化剂相比已经是一个 不小的进步,至少催化剂的成本得到了明显的降低.

表 3 WO₃/ HMS 催化剂的套用与再生

Table 3 The life-time and regeneration of WO ₃ /HMS catalyst					
Raguala timag	Χ/	%	S(CA)/0/	$\mathbf{V}(\mathbf{C}\mathbf{A})/0/0$	
necycle unles	CPE	H_2O_2	3 (GA)/ /0	I (GA)/ /0	
1	100	100	72	72	
2	100	100	71	71	
3	96	98	68	65	
4	90	92	63	57	
5	81	85	55	45	
1^a	95	98	70	67	
2^{a}	88	94	67	59	
3 ^a	74	77	56	42	

The reaction conditions are the same as in Table 1.

 a Catalyst sample after regeneration.

2.2.4 非均相催化反应的验证

环戊烯选择性氧化反应进行 4 h 后, 停止搅拌, 经离心过滤掉催化剂, 此时环戊烯的转化率为 50% 左右. 让滤液继续在相同条件下反应 20 h, 未发现 在滤液中有进一步的反应发生^[22], 这说明 WO₃/ HMS 是非均相催化剂. 我们还发现反应结束后溶 液中 WO₃ 的溶脱量约为 5.5 μ_{g} /ml, 这表明 WO₃/ HMS 催化剂结构十分稳定, WO₃ 与载体 HMS 具有 较强的相互作用, 这可能就是催化剂具有较高活性 的一个重要原因.

3 结论

采用特殊的草酸络合方法将 WO3 固载到六方 介孔全硅分子筛 HMS 上, 制得新型 WO₃/HMS 非 均相催化剂. 该催化剂对环戊烯选择性氧化制备戊 二醛的反应具有优异的催化性能,超过了国内外的 相关研究结果. 在 Si/ ₩ 摩尔比≥30 时, WO₃/ HMS 催化剂均能保持完好的 HMS 介孔结构,并且钨以 高度分散的状态存在于催化剂表面. 当 Si/W 摩尔 比为 30 时,催化剂的催化性能达到最佳,环戊烯和 H_2O_2 的转化率均达到 100%, 戊二醛的选择性高达 72%; 当钨含量增大到 Si/W 摩尔比为 20时, 不仅 导致 HMS 介孔结构部分塌陷,而且出现了晶态 WO3,降低了催化剂的催化活性.催化剂可以重复 套用 6 次,表现出较高的稳定性,但离实际工业化还 有一定距离,需要对催化剂失活的影响因素进行详 细研究,以延长催化剂的寿命. 有关该催化剂作用 过程的微观机理仍在研究之中.

参考文献

- Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359(6397): 710
- 2 Kozhevnikov I V, Sinnema A, Jansen R J J, Pamin K, Van Bekkum H. Catal Lett, 1995, 30(1-4): 241
- 3 Tanev P T, Pinnavaia T J. Science, 1995, 267 (5199): 865
- 4 Tuel A. Microporous Mesoporous Mater, 1999, 27(2-3): 151
- 5 银董红,李文怀,钟炳,彭少逸.催化学报(Yin D H, Li W H, Zhong B, Peng Sh Y. *Chin J Catal*), 2000, **21** (3): 221
- 6 Dai W L, Huang X J, Chen H Y, Deng J F. Indian J Chem, Sect B, 1997, 36B(7): 583

- 7 戴维林, 俞宏坤, 邓景发, 蒋安仁. 化学学报(Dai W L, Yu H K, Deng J F, Jiang A R. *Acta Chim Sin*), 1995, 53(2): 188
- 8 Jin R H, Xia X, Xue D, Deng J-F. Chem Lett, 1999, 28 (5): 371
- 9 Jin R H, Xia X, Dai W L, Deng J F, Li H X. Catal Lett, 1999, 62(2-4): 201
- Chen H, Dai W L, Deng J F, Fan K N. Catal Lett, 2002, 81(1-2): 131
- 11 Jin R H, Li H X, Deng J-F. J Catal, 2001, 203(1): 75
- 12 Dai W L, Chen H, Cao Y, Li H X, Xie S H, Fan K N. *Chem Commun*, 2003, (7): 892
- 13 郭昌文,戴维林,曹勇,范康年.高等学校化学学报 (Guo Ch W, Dai W L, Cao Y, Fan K N. *Chem J Chin* Univ), 2003, 24(6): 1097
- 14 Tanev P T, Chibwe M, Pinnavaia J. Nature, 1994, 368 (6469): 321
- 15 Gontier S, Tuel A. Zeolites, 1995, 15(7): 601
- 16 谢有畅,杨乃芳,刘英骏,唐有祺.中国科学(B辑)
 (Xie Y Ch, Yang N F, Liu Y J, Tang Y Q. Sci China
 (Ser B)), 1982, (8): 673
- 17 Xie Y Ch, Gui L L, Liu Y J. In: Proceedings of the 8th International Congress on Catalysis, Vol I. Berlin (West): Verlag Chemie, Weinheim, 1984. 147
- 18 Hutter R, Mallat T, Baiker A. J Catal, 1995, 153(1):
 177
- 19 Corma A, Camblor M A, Esteve P, Martinez A, Perez Pariente J. J Catal, 1994, 145(1): 151
- 20 Beck J S. Vartuli J C, Roth W J. Leonowicz M E, Kresge C T, Schmitt K D, Chu C T-W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. J Am Chem Soc, 1992, 114(27): 10834
- Wiberg K B, Saegebarth K A. J Am Chem Soc, 1957, 79 (11): 2822
- Sheldon R A, Wallau M, Arends I W C E, Schuchardt U. Acc Chem Res, 1998 31(8): 485