Electronic Supplementary Information

Gold supported on titania for efficient and selective mono-hydrogenation of dinitroaromatics in the liquid phase

Shuang-Shuang Liu, Xiang Liu, Lei Yu, Yong-Mei Liu,*He-Yong He and Yong Cao*

Shanghai key laboratory of molecular catalysis and innovative material, Department of chemistry, Fudan University, Shanghai 200433, P. R. China.

Experimental Details

I. Catalytic materials

Gold catalysts including 1.0 wt% Au/TiO₂, 1.0 wt% Au/ZnO and 1.0 wt% Au/Al₂O₃ were supplied by Mintek. 4.5 wt% Au/Fe₂O₃ (type C, lot no. Au/Fe₂O₃ no. 02-5) were supplied by the World Gold Council (WGC). TiO₂ (Evonik P25, specific surface area: 45 m²·g⁻¹ nonporous, 70% anatase and 30% rutile, purity> 99.5%). PdCl₂, RuCl₃·xH₂O,H₂PtCl₆·6H₂O and HAuCl₄·4H₂O, were supplied by Aldrich and used without further purification.

Au/CeO₂, Au/ZrO₂, Au/SiO₂, Au/C:Au/CeO₂, Au/ZrO₂were prepared based on the method described in ref. S1 and Au/SiO₂, Au/C were prepared according to the method described in ref. S2.

Pt/TiO₂, Pd/TiO₂, Ru/TiO₂:1 wt% Pt/TiO₂, 1 wt% Pd/TiO₂, 1 wt% Ru/TiO₂ catalysts were prepared by incipient-wetness impregnation of the support (P25) with aqueous solution of H₂PtCl₆·6H₂O, PdCl₂, RuCl₃·xH₂O precursors of appropriate amounts (typically 1.0 mL·g⁻¹ support), respectively. After a perfect mixing of the corresponding slurries, samples were dried under vacuum at room temperature for 12 h and then reduced in 5vol% H₂/Ar at 450 °C for 3 h.

II. Catalytic activity measurements

Entry	Catalyst	Au (wt.%)	Mean size of Au NPs(nm) ^a	
1	Au-M/TiO ₂	1.0	2.8	
2	Au/ZnO	1.0	2.9	
3	Au/Al ₂ O ₃	1.0	2.8	

A. Table S1. The gold loading and mean size of Au NPs of the supported Au catalysts.

4	Au/Fe ₂ O ₃	4.5	3.3
5	Au/CeO ₂	0.5	2.9^{b}
6	Au/ZrO ₂	0.8	2.0^{b}
7	Au/SiO ₂	1.0	1.9 ^c
8	Au/C	1.0	3.2 ^c

^{*a*} Determined from TEM. ^{*b*} See ref. S1. ^{*c*} See ref. S2.

B. TEM images

Figure S1 RepresentativeTEM image and size distribution of a) Au/TiO_2 ; b) Au/ZnO; c) Au/Al_2O_3 ; d) Au/Fe_2O_3 ; e) $Au-7.5/TiO_2$ (after five runs).

Figure S2. XP spectra of the Au (4f) signal for Au/ TiO_2 : (a) Au-7.5/ TiO_2 ; (b) Au-7.5/ TiO_2 after five runs.

Table S2.	Effect of solvents on the reduction of <i>m</i> -DNB over Au-M/T	$iO_2.^a$

Entry	Conv. ^{<i>b</i>} (%)	Sel. ^{<i>b</i>} (%)			
Entry		<i>m</i> -NA	<i>m</i> -PDA	<i>m</i> -NNB	
Ethanol	98	66	18	16	
<i>i</i> -Propanol	99	55	23	22	
THF	75	63	15	22	
Toluene	40	65	16	19	
CH_2Cl_2	29	66	19	15	
Dioxane	31	65	25	10	

^{*a*} Reaction conditions: 0.5mmol *m*-DNB, Au-M/TiO₂(Au: 0.5mol%), 5 ml solvent, 60 °C, 3 MPa H₂,1 h. ^{*b*} Conversion and selectivity determined by GC.

.

Entry	Т	Р	t	Conv. ^b	Sel. ^b for <i>m</i> -NA
	[°C]	[MPa]	[h]	[%]	[%]
1	60	4	0.7	98	59
2	60	3	1.0	98	66
3	60	2	1.5	95	64
4	60	1	3.5	98	67
5	100	3	0.5	97	60
6	80	3	0.6	98	61
7	40	3	4.5	97	68

Table S3. Effect of solvents on the reduction of *m*-DNB over Au-M/TiO₂.^{*a*}

^{*a*} Reaction conditions: 0.5 mmol *m*-DNB, Au-M /TiO₂(Au: 0.5 mol%), 5 ml ethanol. ^{*b*} Conversion and selectivity determined by GC

D. 20-mmol scale synthesis of *m*-NA

Scheme S1. 20mmol scale reduction of *m*-DNB.

References

[S1]X. Liu, S. Ye, H. Q. Li, Y. M. Liu, Y. Cao and K. N. Fan, *Catal. Sci. Technol.*, 2013, 3, 3200.
[S2]Y. M. Liu, L. He, M. M. Wang, Y. Cao, H. Y. He and K. N. Fan, *ChemSusChem*, 2012, 5, 1392.

Characterization of Products

3-Nitroaniline

¹H NMR (400 MHz, CDCl₃): δ 7.58 (dd, J = 8.0, 2.2 Hz, 1 H), 7.49 (t, J = 2.2 Hz, 1 H), 7.27 (t, J = 8.0 Hz, 1 H), 6.95 (dd, J = 8.0, 2.2 Hz, 1 H), 4.00 (s, 2 H).¹³C NMR (100 MHz, CDCl₃): δ 149.27, 147.49, 129.94, 120.66, 113.15, 109.03.

4-Nitroaniline

¹H NMR (400 MHz, DMSO): δ 7.93 (d, J = 9.2 Hz, 2 H), 6.71 (br, 2 H), 6.58 (d, J = 9.0 Hz, 2 H).¹³C NMR (100 MHz, DMSO): δ 155.76, 135.65, 126.46, 112.42.

2-Nitroaniline

¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, J = 8.0 Hz, 1 H), 7.36 (t, J = 8.1 Hz, 1 H), 6.81 (d, J = 8.3 Hz, 1 H), 6.70 (t, J = 8.0 Hz, 1 H), 5.98 (s, 2 H).

2-Methyl-3-nitroaniline

¹H NMR (400 MHz, DMSO): δ 7.07 (t, J = 8.0 Hz, 1 H), 6.93 (d, J = 7.9 Hz, 1 H), 6.88 (d, J = 8.0 Hz, 1 H), 5.54 (s, 2 H), 2.07 (s, 3 H).¹³C NMR (100 MHz, DMSO): δ 151.98, 149.07, 127.13, 117.89, 113.97, 111.00, 12.88.

4-Methyl-3-nitroaniline

¹H NMR (400 MHz, DMSO): δ 7.15 (d, *J* = 2.4 Hz, 1 H), 7.09 (d, *J* = 8.3 Hz, 1 H), 6.80 (dd, *J* = 8.2, 2.4 Hz, 1 H), 5.55 (s, 2 H), 2.31 (s, 3 H).¹³C NMR (100 MHz, DMSO): δ 149.26, 147.96, 133.07, 119.02, 118.58, 108.21, 18.78.

2-Methyl-5-nitroaniline

¹H NMR (400 MHz, DMSO): δ 7.79 (d, *J* = 2.5 Hz, 1H), 7.56 (dd, *J* = 8.2, 2.4 Hz, 1H), 7.25 (d, *J* = 8.1 Hz, 1H), 2.16 (s, 3 H).

4-Chloro-3-nitroaniline

¹H NMR (500 MHz, CDCl₃): δ 7.26 (d, *J* = 8.6 Hz, 1 H), 7.13 (d, *J* = 2.6 Hz, 1 H), 6.78 (dd, *J* = 8.6, 2.7 Hz, 1 H), 4.00 (s, 2 H).¹³C NMR (125 MHz, CDCl₃): δ 148.34, 145.99, 132.28, 119.38, 114.96, 110.94.

2-Chloro-5-nitroaniline

¹H NMR (500 MHz, CDCl₃): δ 7.61 (d, J = 2.4 Hz, 1H), 7.53 (dd, J = 8.7, 2.5 Hz, 1H), 7.38 (d, J = 8.7 Hz, 1H), 4.40 (s, 2 H).¹³C NMR (125 MHz, CDCl₃): δ 147.60, 143.78, 130.07, 125.40, 113.47, 109.87.

2-Nitrobenzene-1,4-diamine

¹H NMR (500 MHz, CDCl₃): δ 7.43 (d, *J* = 2.6 Hz, 1H), 6.87 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.69 (d, *J* = 8.8 Hz, 1H), 5.71 (br, 2H), 3.49 (br, 2H).¹³C NMR (125 MHz, CDCl₃): δ 145.10, 127.51, 118.58, 114.39, 110.75, 105.78.

2-Chloro-3-nitroaniline

¹H NMR (500 MHz, CDCl₃): δ 7.21–7.11 (m, 2 H), 6.97–6.89 (m, 1 H), 4.40 (br, 2 H).¹³C NMR (125 MHz, CDCl₃): δ 147.61, 143.77, 130.07, 125.40, 113.47, 109.87.

¹H NMR (500 MHz, CDCl₃): δ 7.72 (d, *J* = 8.7 Hz, 1 H), 6.93 (d, *J* = 7.4 Hz, 1 H), 6.62 (t, J = 8.1 Hz, 1 H), 5.94 (br, 2 H), 3.43 (br, 2 H).¹³C NMR (125 MHz, CDCl₃): δ 136.78, 135.50, 133.66, 122.25, 118.13, 116.73.

3-Amino-5-nitrobenzonitrile

¹H NMR (400 MHz, DMSO): δ 7.70–7.66 (m, 1 H), 7.63 (t, *J* = 2.2 Hz, 1 H), 7.25–7.22 (m, 1 H), 6.33 (br, 2 H).¹³C NMR (100 MHz, DMSO): δ 151.28, 149.46, 121.84, 118.14, 113.23, 112.84, 111.88.

