Supporting Information for

Towards quantitative and scalable transformation of furfural to cyclopentanone with supported gold catalysts

Gao-Shuo Zhang, Ming-Ming Zhu, Qi Zhang, Yong-Mei Liu, He-Yong He, and Yong Cao*

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China

E-mail: yongcao@fudan.edu.cn

Entry	Additive	Conv. [%]	Mass balance [%]	Sel. [%]					
			Mass balance [70]	СРО	CPL	MF	FAL	CEON	
1	Na ₂ CO ₃	>99	27±5	0	0	3	24	0	
2	Na ₂ HPO ₄	>99	48±3	0	0	7	41	0	
3	none	>99	99±1	>99	0	0	0	0	
4	NaH ₂ PO ₄	>99	64±3	47	1	0	11	5	
5	H_3PO_4	>99	31±5	19	2	0	4	6	

Table S1. Effect of additives on the transformation of furfural (FFA) over 0.73 wt% Au/TiO2-A.[a]

[a] Reaction conditions: FFA (5.2 mmol), H₂O (10 mL), additive (0.1 mmol), H₂ (4 MPa), S/C (2000), 160 °C, 1.2 h.

Table S2. The hydrogenation of FFA over platinum-group-metal (PGM)-based catalysts.^[a]

Entry	catalvet[b]	Conv. [%]	Mass balance [%]	Sel. [%]					
	catalyst			СРО	CPL	MF	FAL	CEON	
1	Pt/TiO ₂ -A (0.73 wt%)	87	87±3	71	5	11	0	0	
2	Pd/TiO ₂ -A (0.73 wt%)	23	95±2	87	1	6	0	1	
3	Ir/TiO ₂ -A (0.73 wt%)	56	93±2	34	0	0	0	59	
4	Rh/TiO ₂ -A (0.73 wt%)	41	94±2	93	0	0	0	1	

[a] Reaction conditions: FFA (5.2 mmol), H₂O (10 mL), H₂ (4 MPa), S/C (2000), 160 °C, 1.2 h.

Table S3. The hydrogenation of FFA over TiO2-A supported noble catalysts at 80 °C.^[a]

Entry	catalvet	Conv [%]	Sel. [%]		
	Catalyst		FAL	other	
1	Au/TiO ₂ -A (0.73 wt%)	31	99	0	
2	Pt/TiO ₂ -A (0.73 wt%)	82	99	0	
3	Pd/TiO ₂ -A (0.73 wt%)	63	99	0	

[a] Reaction conditions: FFA (5.2 mmol), H₂O (10 mL), H₂ (4 MPa), S/C (2000), 80 °C, 1.2 h.

Table S4. The effect of different-sized gold particles and various gold loadings on the transformation of FFA to CPO.^[a]

Entry	Catalyst	Average	Conv. [%]	TOF ^[b]	Mass balance [%]	Sel. [%]			
Linu y		size [nm]		$[h^{-1}]$		СРО	CPL	FAL	CEON

1	Au/TiO ₂ -A (0.73wt%)	2.1	>99	7520	99±1	>99	0	0	0
2	Au/TiO ₂ -A (0.71wt%)	4.6 ^[c]	35	680	99±1	36	0	25	38
3	Au/TiO ₂ -A (0.75wt%)	8.4 ^[d]	16	270	99±1	25	0	28	46
4	Au/TiO ₂ -A (0.24wt%)	2.1	>99	7560	99±1	>99	0	0	0
5	Au/TiO ₂ -A (0.10wt%)	2.0	>99	7470	99±1	>99	0	0	0

[a] Reaction conditions: FFA (5.2 mmol), H₂O (10 mL), H₂ (4 MPa), S/C (2000), 160 °C, 1.2 h; [b] TOF values based on total the gold loading at FFA conversion of 15%; [c] Figure S9e; [d] Figure S9f.

Figure S1. Reaction profiles for the hydrogenation of FFA over a series of Au/TiO₂-A catalysts with different gold loading content or S/C levels. (a) 0.24 wt% Au/TiO₂- A (S/C~2000); (b) 0.73 wt% Au/TiO₂-A mixed with seven-fold bare TiO₂-A (S/C~2000); (c) 0.24 wt% Au/TiO₂-A (S/C~10000); (d) 0.73 wt% Au/TiO₂-A (S/C~10000). Reaction condition: FFA (5.2 mmol), H₂O (10 mL), H₂ (4 MPa), 160 °C.

Table S5. The effect of reaction temperature and hydrgen pressure on the transformation of FFA to CPO over 0.10 wt% Au/TiO₂-A.^[a]

Entry	H ₂ [MPa]	/IPa] T [ºC]	Conv. [%]	Mass balance [%]	Sel. [%]				
				Mass balance [70]	СРО	CPL	FAL	CEON	
1	4	120	42	99±1	18	0	71	10	
2	4	140	77	99±1	76	0	10	13	
3	4	160	>99	99±1	>99	0	0	0	
4	4	180	>99	95±2	88	7	0	0	
5	3	160	92	99±1	86	0	0	13	
6	5	160	>99	99±1	96	3	0	0	

[a] Reaction conditions: FFA (5.2 mmol), $\rm H_2O$ (10 mL), S/C (2000), 1.2 h.

Figure S2. NH₃-TPD profiles of various supports and gold catalysts.

Figure S3. FTIR spectra of pyridine adsorbed onto the various oxide supports.

Figure S4. Kinetic profiles of 50 mmol scale. Reaction condition: FFA (50 mmol), catalyst (0.10 wt% Au/TiO₂-A), H₂O (100 mL), H₂ (4 MPa), S/C (20000), 160 °C.

Figure S5. Dependence of the initial reaction rates on the catalyst concentration for the transformation of furfural. Reaction condition: FFA (50 mmol), H_2O (100 mL), H_2 (4 MPa), catalyst (0.10 wt% Au/TiO₂-A), 160 °C, conversion of FFA (15%).

Figure S6. Powder XRD patterns of various Au/TiO₂ catalysts.

Figure S7. XANES analysis of Au/TiO₂-A catalyst.

Figure S8. TEM analysis of various catalysts (a) $0.10 \text{ wt\% Au/TiO}_2$ -A; (b) $0.10 \text{ wt\% Au/TiO}_2$ -A-reused; (c) $0.24 \text{ wt\% Au/TiO}_2$ -A; (d) $0.73 \text{ wt\% Au/TiO}_2$ -A; (e) $0.71 \text{ wt\% Au/TiO}_2$ -A (4.6 nm); (f) $0.75 \text{ wt\% Au/TiO}_2$ -A (8.4 nm); (g) $0.63 \text{ wt\% Au/TiO}_2$ -R; (h) $0.62 \text{ wt\% Au/TiO}_2$ -P25; (i) $0.85 \text{ wt\% Au/Al}_2$ O₃; (j) $0.65 \text{ wt\% Au/SiO}_2$; (k) $0.68 \text{ wt\% Au/ZrO}_2$; (l) 0.64 wt% Au/HY; (m) 0.62 wt% Au/H-ZSM-5; (n) $0.61 \text{ wt\% Au/Nb}_2$ O₅.

Figure S9. XRD analysis of various forms of nanostructured CeO₂.

Figure S10. TEM analysis of various forms of nanostructured CeO₂. (a) CeO₂-nanorods; (b) CeO₂-90; (c) CeO₂-octahedra; (d) CeO₂-cube; (e) CeO₂-meso; (f) CeO₂-nps; (g) CeO₂-nanorods-used.