Supporting Information

Direct Synthesis of Pyrroles via Heterogeneous Catalytic Condensation of Anilines with Bioderived Furans

Lei Tao, Zi-Jian Wang, Tian-Hao Yan, Yong-Mei Liu, He-Yong He and Yong Cao*
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
*Corresponding author; E-mail: yongcao@fudan.edu.cn

1. Materials

1.1 Catalytic materials

H-ZSM-5 (18), H-BEA (12.5), H-MOR (12.5), H-Y (2.6), H-Y (3.2), H-Y (5) were supplied by NanKai University Catalyst Co. Ltd. (Tianjin, China). CeO_{2} was supplied by Evonik. MgO was supplied by Alfa Aesar. Commercially available reagents and solvents (Sigma-Aldrich) were used with further purification.

1.2 Catalyst preparation

Preparation of $\mathbf{Z r O}_{2}: \mathrm{ZrO}_{2}$ powder was prepared by a conventional precipitation method following the reported procedure. ${ }^{[1]]}$ Briefly, $12.9 \mathrm{~g} \mathrm{ZrOCl}_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ was dissolved in 200 mL deionized water at room temperature, the pH was adjusted to 9.0 by dropwise addition of $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{M})$. The resultant hydro gel was washed with deionized water until free of chloride ions. The precipitate was then dried at $110^{\circ} \mathrm{C}$ overnight and calcined at $400{ }^{\circ} \mathrm{C}$ for 2 h in air. The BET surface area of the resultant material was $110 \mathrm{~m}^{2} \cdot \mathrm{~g}^{-1}$ (Micromeritics TriStar 3000). The crystal phase of ZrO_{2} was composed of 56% monoclinic phase and 44% tetragonal phase.
Preparation of $\mathbf{N b}_{2} \mathbf{O}_{5}$: $\mathrm{Nb}_{2} \mathrm{O}_{5}$ powder was prepared by calcination of niobium oxalate at $500{ }^{\circ} \mathrm{C}$ for 4 h under air. ${ }^{[S 2]}$

Preparation of $\mathbf{S i O}_{2}-\mathrm{Al}_{2} \mathbf{O}_{3}: \mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ powder was prepared by the addition of TEOS into water containing nitric acid, aluminium nitrate $(\mathrm{Si} / \mathrm{Al}=1)$ with vigorous stirring. After the solution became homogeneous it was sealed in a plastic container, and kept at $50^{\circ} \mathrm{C}$ for 20 h for gelation. The obtained gel was dried at $50^{\circ} \mathrm{C}$ for 1 week and then heated at $600^{\circ} \mathrm{C}$ for $2 \mathrm{~h} .{ }^{[S 3]}$

2. Supplementary Data

Table S1. The influence of acid strength on the yield of the target pyrrole.

Entry	Catalyst	Si/Al ratio	Desorption temperature of acid site type $\mathbf{1}\left({ }^{\circ} \mathrm{C}\right)$	Desorption temperature of acid site type $2\left({ }^{\circ} \mathrm{C}\right)$	Pyrrole yield (\%)
1	H-ZSM-5	18	213	412	34
2	H-MOR	12.5	196	419	9
3	H-BEA	12.5	193	314	63
4		2.6	203	307	96
5	H-Y	3.2	211	312	91
6		5	223	320	85

Table S2. The relative ratio of Brønsted acid to Lewis acid.

Entry	Catalyst	Si/Al ratio	B/L ratio	Pyrrole yield (\%)
1	H-ZSM-5	18	$1: 1.04$	34
2	H-MOR	12.5	$1: 0.63$	9
3	H-BEA	12.5	$1: 5.49$	63
4		2.6	$1: 0.43$	96
	$H-Y$	3.2	$1: 0.68$	91
		5	$1: 0.78$	85

Figure S1. XRD patterns of various zeolite samples.

Figure S2. Recycling results of $\mathrm{H}-\mathrm{Y}$ (2.6) in condensation of 2,5-dimethylfuran with m-methylaniline. Reaction conditions: $1 \mathrm{mmol} 2,5$-dimethylfuran, $1 \mathrm{mmol} m$-methylaniline, 2 mL toluene, $150 \mathrm{mg} \mathrm{H}-\mathrm{Y}$ (2.6), $150^{\circ} \mathrm{C}, 5$ bar $\mathrm{N}_{2}, 0.7 \mathrm{~h}$.

Figure S3. NH_{3}-TPD profiles of various zeolite samples.

Figure S4. FTIR spectra of pyridine adsorbed onto the various zeolite samples.

Figure S5. Time-course plot for the direct condensation of 2,5-dimethylfuran with m-methylaniline. Reaction conditions: $1 \mathrm{mmol} 2,5$-dimethylfuran, $1 \mathrm{mmol} m$-methylaniline, 2 mL toluene, $150 \mathrm{mg} \mathrm{H}-\mathrm{Y}$ (2.6), $150^{\circ} \mathrm{C}, 5$ bar $\mathrm{N}_{2}, 0.7 \mathrm{~h}$.

Figure S6. Results of mechanistic studies. Plot of $\ln ($ rate $)$ versus $\ln ([2,5$-dimethylfuran]) and $\ln ([m$-methylaniline $])$.

Figure \boldsymbol{S} 7. Arrhenius plot for $\mathrm{H}-\mathrm{Y}$ (2.6) catalyzed direct condensation of 2,5-dimethylfuran with m-methylaniline.

without base: 96% yield with pyridine: 8% yield with 2,6-lutidine: 13% yield

Scheme S1. Determination of the role of acid type by selective poisoning experiment. Reaction conditions: $1 \mathrm{mmol} 2,5$-dimethylfuran, $1 \mathrm{mmol} m$-methylaniline, 2 mL toluene, $150 \mathrm{mg} \mathrm{H}-\mathrm{Y}$ (2.6), 0.5 mmol additive, $150^{\circ} \mathrm{C}, 5$ bar $\mathrm{N}_{2}, 0.5 \mathrm{~h}$

Scheme S2. Large-scale condensation of 2,5-dimethylfuran with m-methylaniline under neat condition. Reaction conditions: $100 \mathrm{mmol} 2,5$-dimethylfuran, $100 \mathrm{mmol} m$-methylaniline, $150 \mathrm{mg} \mathrm{H}-\mathrm{Y}$ (2.6), $180^{\circ} \mathrm{C}, 5$ bar $\mathrm{N}_{2}, 18 \mathrm{~h}$

Scheme S3. Traditional synthetic route for Pyrvinium. ${ }^{[54]}$

3. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra of products

(Scheme 1, entry 1). ${ }^{[55]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.45-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.19$ (d, $J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 138.9,128.9,128.6,128.1,127.5$ 105.6, 12.9.

(Scheme 1, entry 2). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.96$ (d, $\left.J=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.70(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 145.8,129.6$, 129.0, 115.1, 104.9, 12.9; HRMS (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$187.1230, observed 187.1238.

(Scheme 1, entry 3). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70$ (ddd, $J=8.0,2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{ddd}, J=8.0,2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}$, 2H), 3.73 (br s, 2H), 2.04 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 147.0,140.0,129.7,128.7,118.4$, 114.8, 114.3, 105.3, 12.9; HRMS (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$187.1230, observed 187.1237.

(Scheme 1, entry 4). ${ }^{[56]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 137.4,136.3$, 129.6, 128.8, 127.9, 105.4, 21.1, 12.9 .

(Scheme 1 entry 5). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$

MHz): $\delta 138.9,128.8,128.7,128.6,128.3,125.2,105.5,21.2,12.9$; HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$186.1277, observed 186.1288.

(Scheme 1, entry 6). ${ }^{[57]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 146.7,144.7,128.8,128.5$, 124.5, 107.4, 13.1.

(Scheme 1, entry 7). ${ }^{[88]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 158.8,131.7$, 129.2, 129.0, 114.2, 105.2, 55.4, 12.9.

(Scheme 1, entry 8). ${ }^{[88]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 137.5,133.5,129.4,129.2$, 128.6, 106.0, 12.9.

(Scheme 1, entry 9). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.66(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H})$, $7.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz): $\delta 149.3,148.8,135.6,135.5,128.9,123.7,106.6,13.0$; HRMS (ESI) calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$173.1073, observed 173.1081.

(Scheme 1, entry 10). ${ }^{[59]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52$ (quint, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H})$,
$1.89(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 135.8,134.2,131.9,129.8,128.5,128.0,127.2,126.5$, 126.2, 125.3, 123.3, 105.4, 12.5.

(Scheme 1, entry 11). ${ }^{[10]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.49$ (br s, 1 H$), 5.73$ (d, $J=2.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 128.1,105.7,12.9$.

 $1 \mathrm{H}), 7.09(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 140.8,129.5$, 125.6, 120.5, 119.3, 110.4.

(Scheme 2, entry 2). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 140.4,129.4,129.0,126.8,125.7,121.3,108.1,108.0,12.9$; HRMS (ESI) calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$158.0964, observed 158.0955.

(Scheme 2, entry 3). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): ~ \delta 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 3 \mathrm{H})$, $6.74(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.07$ (quint, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{q}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 140.4,135.6,129.0,127.0,126.1,121.5$, 107.9, 106.0, 20.1, 13.3; HRMS (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$172.1121, observed 172.1122 .

(Scheme 2, entry 4). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27$ (m, $3 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 140.7$, 129.0, 126.5, 125.6, 125.2, 119.9, 116.2, 109.8, 11.5, 10.5; HRMS (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+}$172.1121, observed 172.1135.

Reference

[S1] Zhang, X.; Shi, H.; Xu, B. Q. Angew. Chem. Int. Ed. 2005, 44, 7132-7135.
[S2] Ohyama, J.; Kanao, R.; Esaki, A.; Satsuma, A. Chem. Commun. 2014, 50, 5633-5636.
[S3] Yabuki, M.; Takahashi, R.; Sato, S.; Sodesawa, T.; Ogura, K. Phys. Chem. Chem. Phys. 2002, 4, 4830-4837.
[S4] Mao, Y.; Lin, N.; Tian, W.; Huang, Z.; An, J. Heterocycles 2012, 85, 1179-1185.
[S5] Ramanathan, B.; Keith, A. J.; Armstrong, D.; Odom, A. L. Org. Lett. 2004, 6, 2957-2960.
[S6] Duan, H.; Sengupta, S.; Petersen, J. L.; Akhmedov, N. G.; Shi, X. J. Am. Chem. Soc. 2009, 131, 12100-12102.
[S7] Chen, J.; Yang, X.; Liu, M.; Wu, H.; Ding, J.; Su, W. Synth. Commun. 2009, 39, 4180-4198.
[S8] Pridmore, S. J.; Slatford, P. A.; Taylor, J. E.; Whittlesey, M. K.; Williams, J. M. J. Tetrahedron 2009, 65, 8981-8986.
[S9] Banik, B. K.; Banik. I.; Renteria, M.; Dasgupta, S. K. Tetrahedron Lett. 2005, 46, 2653-2645.
[S10] Chiu, P. K.; Sammes, M. P. Tetrahedron 1988, 44, 3531-3538.
[S11] Taillefer, M.; Xia, N.; Ouali, A. Angew. Chem. Int. Ed. 2007, 46, 934-936.

ppm (t1)

ppm (t1)

ppm (t1)

ppm (t1)

ppm (t1)

