Supporting Information

Direct Synthesis of Pyrroles via Heterogeneous Catalytic Condensation of Anilines with Bioderived Furans

Lei Tao, Zi-Jian Wang, Tian-Hao Yan, Yong-Mei Liu, He-Yong He and Yong Cao*

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.

*Corresponding author; E-mail: yongcao@fudan.edu.cn

1. Materials

1.1 Catalytic materials

H-ZSM-5 (18), H-BEA (12.5), H-MOR (12.5), H-Y (2.6), H-Y (3.2), H-Y (5) were supplied by NanKai University Catalyst Co. Ltd. (Tianjin, China). CeO₂ was supplied by Evonik. MgO was supplied by Alfa Aesar. Commercially available reagents and solvents (Sigma-Aldrich) were used with further purification.

1.2 Catalyst preparation

Preparation of ZrO₂: ZrO₂ powder was prepared by a conventional precipitation method following the reported procedure.^[S1] Briefly, 12.9 g ZrOCl₂·8H₂O was dissolved in 200 mL deionized water at room temperature, the pH was adjusted to 9.0 by dropwise addition of NH₃·H₂O (2.5 M). The resultant hydro gel was washed with deionized water until free of chloride ions. The precipitate was then dried at 110 °C overnight and calcined at 400 °C for 2 h in air. The BET surface area of the resultant material was 110 m²·g⁻¹ (Micromeritics TriStar 3000). The crystal phase of ZrO₂ was composed of 56 % monoclinic phase and 44 % tetragonal phase.

Preparation of Nb₂O₅: Nb₂O₅ powder was prepared by calcination of niobium oxalate at 500 $^{\circ}$ C for 4 h under air.^[S2]

Preparation of SiO₂-Al₂O₃: SiO₂-Al₂O₃ powder was prepared by the addition of TEOS into water containing nitric acid, aluminium nitrate (Si/Al = 1) with vigorous stirring. After the solution became homogeneous it was sealed in a plastic container, and kept at 50 °C for 20 h for gelation. The obtained gel was dried at 50 °C for 1 week and then heated at 600 °C for 2 h.^[S3]

2. Supplementary Data

Entry	Catalyst	Si/Al ratio	Desorption temperature of acid	Desorption temperature of acid	Pyrrole yield (%)
-			site type 1 (°C)	site type 2 (°C)	
1	H-ZSM-5	18	213	412	34
2	H-MOR	12.5	196	419	9
3	H-BEA	12.5	193	314	63
4		2.6	203	307	96
5	H-Y	3.2	211	312	91
6		5	223	320	85

Table S1. The influence of acid strength on the yield of the target pyrrole.

Table S2. The relative ratio of Brønsted acid to Lewis acid.

Entry	Catalyst	Si/Al ratio	B/L ratio	Pyrrole yield (%)
1	H-ZSM-5	18	1:1.04	34
2	H-MOR	12.5	1:0.63	9
3	H-BEA	12.5	1:5.49	63
4		2.6	1:0.43	96
5	H-Y	3.2	1:0.68	91
6		5	1:0.78	85

Figure S1. XRD patterns of various zeolite samples.

Figure S2. Recycling results of H-Y (2.6) in condensation of 2,5-dimethylfuran with *m*-methylaniline. Reaction conditions: 1 mmol 2,5-dimethylfuran, 1 mmol *m*-methylaniline, 2 mL toluene, 150 mg H-Y (2.6), 150 °C, 5 bar N_2 , 0.7 h.

Figure S3. NH₃-TPD profiles of various zeolite samples.

Figure S4. FTIR spectra of pyridine adsorbed onto the various zeolite samples.

Figure S5. Time-course plot for the direct condensation of 2,5-dimethylfuran with *m*-methylaniline. Reaction conditions: 1 mmol 2,5-dimethylfuran, 1 mmol *m*-methylaniline, 2 mL toluene, 150 mg H-Y (2.6), 150 °C, 5 bar N₂, 0.7 h.

Figure S6. Results of mechanistic studies. Plot of ln(rate) versus ln([2,5-dimethylfuran]) and ln([*m*-methylaniline]).

Figure S7. Arrhenius plot for H-Y (2.6) catalyzed direct condensation of 2,5-dimethylfuran with *m*-methylaniline.

without base: 96% yield with pyridine: 8% yield with 2,6-lutidine: 13% yield

Scheme S1. Determination of the role of acid type by selective poisoning experiment. Reaction conditions: 1 mmol 2,5-dimethylfuran, 1 mmol *m*-methylaniline, 2 mL toluene, 150 mg H-Y (2.6), 0.5 mmol additive, 150 °C, 5 bar N_2 , 0.5 h

Scheme S2. Large-scale condensation of 2,5-dimethylfuran with *m*-methylaniline under neat condition. Reaction conditions: 100 mmol 2,5-dimethylfuran, 100 mmol *m*-methylaniline, 150 mg H-Y (2.6), 180 °C, 5 bar N₂, 18 h

Scheme S3. Traditional synthetic route for Pyrvinium.^[S4]

3. ¹H-NMR and ¹³C-NMR spectra of products

(Scheme 1, entry 1).^{[S5] 1}H-NMR (CDCl₃, 400 MHz): δ 7.45-7.35 (m, 3H), 7.19 (d, *J* = 7.2 Hz, 2H), 5.90 (s, 2H), 2.02 (s, 6H); ¹³C-NMR (CDCl₃, 100 MHz): δ 138.9, 128.9, 128.6, 128.1, 127.5 105.6, 12.9.

(Scheme 1, entry 2). ¹H-NMR (CDCl₃, 400 MHz): δ 6.96 (d, J = 7.2 Hz, 2H), 6.70 (d, J = 7.2 Hz, 1H), 5.86 (s, 2H), 3.64 (br s, 2H), 2.01 (s, 6H); ¹³C-NMR (CDCl₃, 100 MHz): δ 145.8, 129.6, 129.0, 115.1, 104.9, 12.9; HRMS (ESI) calculated for C₁₂H₁₄N₂ [M+H]⁺ 187.1230, observed 187.1238.

 NH_2

(Scheme 1, entry 3). ¹H-NMR (CDCl₃, 400 MHz): δ 7.21 (t, J = 8.0 Hz, 1H), 6.70 (ddd, J = 8.0, 2.4, 0.8 Hz, 1H), 6.59 (ddd, J = 8.0, 2.4, 0.8 Hz, 1H), 6.51 (t, J = 2.0 Hz, 1H), 5.87 (s, 2H), 3.73 (br s, 2H), 2.04 (s, 6H); ¹³C-NMR (CDCl₃, 100 MHz): δ 147.0, 140.0, 129.7, 128.7, 118.4, 114.8, 114.3, 105.3, 12.9; HRMS (ESI) calculated for C₁₂H₁₄N₂ [M+H]⁺ 187.1230, observed 187.1237.

(Scheme 1, entry 4).^{[S6] 1}H-NMR (CDCl₃, 400 MHz): δ 7.24 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 5.89 (s, 2H), 2.41 (s, 3H), 2.02 (s, 6H); ¹³C-NMR (CDCl₃, 100 MHz): δ 137.4, 136.3, 129.6, 128.8, 127.9, 105.4, 21.1, 12.9.

(Scheme 1 entry 5). ¹H-NMR (CDCl₃, 400 MHz): δ 7.31 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.00 (d, J = 8.0 Hz, 2H), 5.88 (s, 2H), 2.39 (s, 3H), 2.02 (s, 6H); ¹³C-NMR (CDCl₃, 100

MHz): δ 138.9, 128.8, 128.7, 128.6, 128.3, 125.2, 105.5, 21.2, 12.9; HRMS (ESI) calculated for $C_{13}H_{15}N [M+H]^+$ 186.1277, observed 186.1288.

 NO_2

(Scheme 1, entry 6).^{[S7] 1}H-NMR (CDCl₃, 400 MHz): δ 8.35 (d, J = 8.8 Hz, 2H), 7.39 (d, J = 8.8 Hz, 2H), 5.96 (s, 2H), 2.08 (s, 6H); ¹³C-NMR (CDCl₃, 100 MHz): δ 146.7, 144.7, 128.8, 128.5, 124.5, 107.4, 13.1.

(Scheme 1, entry 7).^{[S8] 1}H-NMR (CDCl₃, 400 MHz): δ 7.12 (d, *J* = 8.4 Hz, 2H), 6.96 (d, *J* = 8.4 Hz, 2H), 5.88 (s, 2H), 3.85 (s, 3H), 2.01 (s, 6H); ¹³C-NMR (CDCl₃, 100 MHz): δ 158.8, 131.7, 129.2, 129.0, 114.2, 105.2, 55.4, 12.9.

(Scheme 1, entry 8).^{[S8] 1}H-NMR (CDCl₃, 400 MHz): δ 7.42 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 5.90 (s, 2H), 2.02 (s, 6H); ¹³C-NMR (CDCl₃, 100 MHz): δ 137.5, 133.5, 129.4, 129.2, 128.6, 106.0, 12.9.

(Scheme 1, entry 9). ¹H-NMR (CDCl₃, 400 MHz): δ 8.66 (d, J = 4.0 Hz, 1H), 8.53 (s, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.43 (dd, J = 7.2, 4.8 Hz, 1H), 5.94 (s, 2H), 2.04 (s, 6H); ¹³C-NMR (CDCl₃, 100 MHz): δ 149.3, 148.8, 135.6, 135.5, 128.9, 123.7, 106.6, 13.0; HRMS (ESI) calculated for C₁₁H₁₂N₂ [M+H]⁺ 173.1073, observed 173.1081.

(Scheme 1, entry 10).^{[S9] 1}H-NMR (CDCl₃, 400 MHz): δ 7.91 (d, J = 8.0 Hz, 2H), 7.52 (quint, J = 7.6 Hz, 2H), 7.45 (s, 1H), 7.41 (t, J = 6.4 Hz, 1H), 7.14 (d, J = 8.0 Hz, 1H), 6.01 (s, 2H),

1.89 (s, 6H); ¹³C-NMR (CDCl₃, 100 MHz): δ 135.8, 134.2, 131.9, 129.8, 128.5, 128.0, 127.2, 126.5, 126.2, 125.3, 123.3, 105.4, 12.5.

(Scheme 1, entry 11).^{[S10] 1}H-NMR (CDCl₃, 400 MHz): δ 7.49 (br s, 1H), 5.73 (d, J = 2.8 Hz, 2H), 2.19 (s, 6H); ¹³C-NMR (CDCl₃, 100 MHz): δ 128.1, 105.7, 12.9.

(Scheme 2, entry 1).^[S11] ¹H-NMR (CDCl₃, 400 MHz): δ 7.44-7.38 (m, 4H), 7.26-7.22 (m, 1H), 7.09 (t, J = 2.0 Hz, 2H), 6.35 (t, J = 2.0 Hz, 2H); ¹³C-NMR (CDCl₃, 100 MHz): δ 140.8, 129.5, 125.6, 120.5, 119.3, 110.4.

(Scheme 2, entry 2). ¹H-NMR (CDCl₃, 400 MHz): δ 7.43 (t, J = 7.2 Hz, 2H), 7.34 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 8.4 Hz, 2H), 6.77 (s, 1H), 6.20 (s, 1H), 6.04 (s, 1H), 2.21 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz): δ 140.4, 129.4, 129.0, 126.8, 125.7, 121.3, 108.1, 108.0, 12.9; HRMS (ESI) calculated for C₁₁H₁₁N [M+H]⁺ 158.0964, observed 158.0955.

(Scheme 2, entry 3). ¹H-NMR (CDCl₃, 400 MHz): δ 7.44-7.40 (m, 2H), 7.35-7.29 (m, 3H), 6.74 (t, *J* = 6.4 Hz, 1H), 6.22 (t, *J* = 3.2 Hz, 1H), 6.07 (quint, *J* = 0.8 Hz, 1H), 2.55 (q, *J* = 3.6 Hz, 2H), 1.15 (t, *J* = 7.6 Hz, 3H); ¹³C-NMR (CDCl₃, 125 MHz): δ 140.4, 135.6, 129.0, 127.0, 126.1, 121.5, 107.9, 106.0, 20.1, 13.3; HRMS (ESI) calculated for C₁₂H₁₃N [M+H]⁺ 172.1121, observed 172.1122.

(Scheme 2, entry 4). ¹H-NMR (CDCl₃, 400 MHz): δ 7.42 (t, J = 8.0 Hz, 2H), 7.33-7.27 (m, 3H), 6.70 (s, 1H), 6.09 (s, 1H), 2.12 (s, 3H), 2.10 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz): δ 140.7, 129.0, 126.5, 125.6, 125.2, 119.9, 116.2, 109.8, 11.5, 10.5; HRMS (ESI) calculated for C₁₂H₁₃N [M+H]⁺ 172.1121, observed 172.1135.

Reference

- [S1] Zhang, X.; Shi, H.; Xu, B. Q. Angew. Chem. Int. Ed. 2005, 44, 7132-7135.
- [S2] Ohyama, J.; Kanao, R.; Esaki, A.; Satsuma, A. Chem. Commun. 2014, 50, 5633-5636.
- [S3] Yabuki, M.; Takahashi, R.; Sato, S.; Sodesawa, T.; Ogura, K. Phys. Chem. Chem. Phys. 2002, 4, 4830-4837.
- [S4] Mao, Y.; Lin, N.; Tian, W.; Huang, Z.; An, J. Heterocycles 2012, 85, 1179-1185.
- [S5] Ramanathan, B.; Keith, A. J.; Armstrong, D.; Odom, A. L. Org. Lett. 2004, 6, 2957-2960.
- [S6] Duan, H.; Sengupta, S.; Petersen, J. L.; Akhmedov, N. G.; Shi, X. J. Am. Chem. Soc. 2009, 131, 12100-12102.
- [S7] Chen, J.; Yang, X.; Liu, M.; Wu, H.; Ding, J.; Su, W. Synth. Commun. 2009, 39, 4180-4198.
- [S8] Pridmore, S. J.; Slatford, P. A.; Taylor, J. E.; Whittlesey, M. K.; Williams, J. M. J. *Tetrahedron* 2009, 65, 8981-8986.
- [S9] Banik, B. K.; Banik. I.; Renteria, M.; Dasgupta, S. K. Tetrahedron Lett. 2005, 46, 2653-2645.
- [S10] Chiu, P. K.; Sammes, M. P. Tetrahedron 1988, 44, 3531-3538.
- [S11] Taillefer, M.; Xia, N.; Ouali, A. Angew. Chem. Int. Ed. 2007, 46, 934-936.

