A Versatile CO-assisted Direct Reductive Amination of 5Hydroxymethylfurfural Catalyzed by Supported Gold

Ming-Ming Zhu, Lei Tao, Qi Zhang, Jing Dong, Yong-Mei Liu,* He-Yong He, and Yong Cao*
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
*Corresponding author; E-mail: ymliu@fudan.edu.cn; yongcao@fudan.edu.cn

1. Chemicals and materials

5-Hydroxymethylfurfural (HMF 99%) was supplied by Aladdin. Titanium tetrachloride (TiCl_{4}) was supplied by Aladdin. Metal oxide CeO_{2} and $\mathrm{TiO}_{2}-\mathrm{P} 25$ were supplied from the Evonik. Anatase TiO_{2} was supplied from Hao tian nano technology (Shanghai) co., LTD. Palladium chloride $\left(\mathrm{PdCl}_{2}\right)$, ruthenium chloride hydrate $\left(\mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}\right)$, chloroplatonic acid hexahydrate $\left(\mathrm{H}_{2} \mathrm{PtCl}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$, rhodium chloride hydrate $\left(\mathrm{RhCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}\right)$, chloroiridic acid hexahydrate $\left(\mathrm{H}_{2} \mathrm{IrCl}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$ and chloroauric acid tetrahydrate $\left(\mathrm{HAuCl}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right)$, were supplied by Aldrich and used without further purification. $1 \mathrm{wt} \%$ $\mathrm{Au} / \mathrm{Al}_{2} \mathrm{O}_{3}$ (catalogue number 79-0160) was supplied by Mintek. Au° colloid was supplied by Dao King technology (Beijing) co., LTD.

2. Catalyst preparation.

2.1 Preparation of rutile TiO_{2}

Rutile $\mathrm{TiO}_{2}\left(\mathrm{TiO}_{2}-\mathrm{R}\right)$ was prepared according to previous literature. ${ }^{[\mathrm{Sl}]}$ Under stirring, TiCl_{4} was added dropwise into ethanol. Then the formed transparent yellow sol was slowly added into deionized water under vigorously stirring. The molar ratio of ethanol, TiCl_{4}, and deionized water was 10:1:140. Subsequently, the solution was further stirred for 30 min . Finally, the solution was maintained in an oven at $50^{\circ} \mathrm{C}$ for 24 h . After that, the formed white precipitate was separated by centrifugation, washed with deionized water for several times and dried at $50^{\circ} \mathrm{C}$. After that the sample was calcined at $400{ }^{\circ} \mathrm{C}$ for 3 h with the heating rate of $2{ }^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$. The BET surface area of the rutile support was $65 \mathrm{~m}^{2} \cdot \mathrm{~g}^{-1}$.

2.2 Preparation of $\mathrm{Au} / \mathrm{TiO}_{2}$ catalysts

$\mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{P} 25$ was prepared by a modified deposition-precipitation (DP) method according to our previous work. ${ }^{[52]}$ Briefly, 2 mL aqueous solutions of $\mathrm{HAuCl}_{4}(10 \mathrm{mg} / \mathrm{mL})$ was added into $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. The pH was adjusted to 7 by dropwise addition of $\mathrm{NaOH}\left(0.2 \mathrm{M}\right.$), and then $1.0 \mathrm{~g} \mathrm{TiO} \mathrm{O}_{2}-\mathrm{P} 25$ (Evonik P25, specific surface area: $50 \mathrm{~m}^{2} \cdot \mathrm{~g}^{-1}$ nonporous, 70% anatase and 30% rutile) was dispersed in the solution, the pH of the solution was adjusted to 7 . The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h , after which the
suspension was cooled to RT. Extensive washing with deionized water was then followed until it was free of Cl^{-}ions. The sample was dried under vacuum at room temperature for 12 h and then calcined in air at $350{ }^{\circ} \mathrm{C}$ for 4 h . By using anatase TiO_{2} (BET surface area: $112 \mathrm{~m}^{2} \cdot \mathrm{~g}^{-1}$) and rutile TiO_{2} as the support, similar $\mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{A}, \mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{R}$ were prepared by the same method as $\mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{P} 25$.

2.3 Preparation of $\mathbf{Z r O}_{\mathbf{2}}$

ZrO_{2} powders were prepared by a conventional precipitation method following the reported procedure. ${ }^{[33]}$ Briefly, $12.9 \mathrm{~g} \mathrm{ZrOCl} 2 \cdot 8 \mathrm{H}_{2} \mathrm{O}$ was dissolved in 200 mL deionized water at $25^{\circ} \mathrm{C}$, the pH was adjusted to 9.0 by dropwise addition of $2.5 \mathrm{M} \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$. After 6 h stirring at $25{ }^{\circ} \mathrm{C}$, the resultant hydro gel was washed with deionized water until free of chloride ions. The precipitate was then dried at $110^{\circ} \mathrm{C}$ overnight and calcined at $400^{\circ} \mathrm{C}$ for 2 h in air. The BET surface area of the resultant material was $115 \mathrm{~m}^{2} \cdot \mathrm{~g}^{-1}$.

2.4 Preparation of $\mathrm{Au} / \mathrm{ZrO}_{2}$ catalyst

A modified deposition-precipitation (DP) method was employed to prepared the $\mathrm{Au} / \mathrm{ZrO}_{2}$ catalysts as follows: Initially, by mixing ZrO_{2} powders (1 g) with 100 mL aqueous solutions of $\mathrm{HAuCl}_{4}(0.2$ $\mathrm{mg} / \mathrm{mL}$), the pH was adjusted to 9.0 by dropwise addition of $0.25 \mathrm{M} \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$. After 6 h continuous stirring at $25^{\circ} \mathrm{C}$ the catalyst was washed five times with deionized water and separated by filtration. The samples were dried at $110^{\circ} \mathrm{C}$ in air for 1 h , followed by reduction with a stream of $5 \mathrm{vol} \% \mathrm{H}_{2} / \mathrm{Ar}$ at 350 ${ }^{\circ} \mathrm{C}$ for 2 h . Safety note: The mixing of gold chloride and ammonia solutions may lead to the formation of explosive gold compounds (fulminating gold). ${ }^{[44]}$ Based on our experimental observations, mixing of ammonia solution (not concentrated, 0.25 M) with gold chloride solution with very low concentration $(0.2 \mathrm{mg} / \mathrm{mL})$ at RT does not result in explosive and friction-sensitive gold compounds.

2.5 Preparation of $\mathrm{Au} / \mathrm{CeO}_{2}$ catalyst

The $\mathrm{Au} / \mathrm{CeO}_{2}$ sample was prepared according to a routine DP procedure described previously. ${ }^{[52]} 2 \mathrm{~mL}$ aqueous solutions of $\mathrm{HAuCl}_{4}(10 \mathrm{mg} / \mathrm{mL})$ was heated to $75^{\circ} \mathrm{C}$ under vigorous stirring. The pH was adjusted to 8 by dropwise addition of $\mathrm{NaOH}(0.2 \mathrm{M})$, and then suitable amount of CeO_{2} (Evonik, Ad Nano 90 , specific surface area: $90 \mathrm{~m}^{2} \cdot \mathrm{~g}^{-1}$) was dispersed in the solution. The mixture was aged for 2 h at $80^{\circ} \mathrm{C}$, after which the suspension was cooled to room temperature. Extensive washing with deionized water was then followed until it was free of chloride ions. The samples were dried under vacuum at room temperature for 12 h , and then calcined in air at $400^{\circ} \mathrm{C}$ for 4 h .

2.6 Preparation of $\mathbf{A u} / \mathrm{SiO}_{2}$ catalyst

$1.0 \mathrm{wt} \% \mathrm{Au} / \mathrm{SiO}_{2}$ catalyst was prepared by the procedure as described elsewhere. ${ }^{[\mathrm{S} 3]}$ Typically, 1.0 g of SiO_{2} (Degussa, Aerosil 380, specific surface area: $380 \mathrm{~m}^{2} \cdot \mathrm{~g}^{-1}$) was introduced into the 100 mL aqueous solutions of $\mathrm{HAuCl}_{4}(0.2 \mathrm{mg} / \mathrm{mL})$ in order to prepare catalysts with $1.0 \mathrm{wt} \%$ gold content. After stirring at $75{ }^{\circ} \mathrm{C}$ for 1 h the solution was cooled down to room temperature and $0.2 \mathrm{M} \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ was added to the solution under stirring. After 6 h stirring at room temperature the catalyst was washed five times with deionized water and separated by centrifugation. The samples were dried at $110^{\circ} \mathrm{C}$ in a forced air oven for 1 h and reduced in flowing $5 \mathrm{vol} \% \mathrm{H}_{2} / \mathrm{Ar}$ at $300^{\circ} \mathrm{C}$ for 2 h .

2.7 Preparation of $\mathrm{Pd} / \mathrm{TiO}_{2}-\mathrm{R}, \mathrm{Pt} / \mathrm{TiO}_{2}-\mathrm{R}, \mathrm{Ru} / \mathrm{TiO}_{2}-\mathrm{R}, \mathrm{Rh} / \mathrm{TiO}_{2}-\mathrm{R}$ and $\mathrm{Ir} / \mathrm{TiO}_{2}-\mathrm{R}$ catalysts

$\mathrm{Pd} / \mathrm{TiO}_{2}-\mathrm{R}, \mathrm{Pt} / \mathrm{TiO}_{2}-\mathrm{R}, \mathrm{Ru} / \mathrm{TiO}_{2}-\mathrm{R}, \mathrm{Rh} / \mathrm{TiO}_{2}-\mathrm{R}$ and $\mathrm{Ir} / \mathrm{TiO}_{2}-\mathrm{R}$ catalysts were prepared by incipient-wetness impregnation (IWI) of the support (rutile TiO_{2}), with aqueous solution of $\mathrm{PdCl}_{2}, \mathrm{H}_{2} \mathrm{PtCl}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}, \mathrm{RhCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{IrCl}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ precursors of appropriate concentrations (typically 1.0 $\mathrm{mL} \cdot \mathrm{g}^{-1}$ support). After a perfect mixing of the corresponding slurries, the resulting mixture was vigorously stirred at $80^{\circ} \mathrm{C}$ for 4 h . Then samples were dried under vacuum at room temperature for 12 h and then reduced in $5 \mathrm{vol} \% \mathrm{H}_{2} / \mathrm{Ar}\left(80 \mathrm{~mL} \cdot \mathrm{~min}^{-1}\right)$ at $400^{\circ} \mathrm{C}$ for 2 h .

3. Leaching and reusability test

For the leaching test, the $\mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{R}$ was removed from the reaction system after HMF reacted with aniline under CO for 1 h . Subsequently, the reaction was continued for another 1.5 h . The products can be sampled at $90 \mathrm{~min}, 120 \mathrm{~min}$, and 150 min during the reaction, respectively. For the reusability test, the following procedure was employed to minimize possible experiment errors arising from the possible loss of catalyst during the RA of HMF. The same amount of catalyst (68 mg of $0.72 \% \mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{R}$, for example) was added into seven different identical reactor for RA of HMF ($0.5 \mathrm{mmol} \mathrm{HMF}, 60{ }^{\circ} \mathrm{C}$). After the reaction run for 2.5 h , the spent $\mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{R}$ was recovered by filtration and washed thoroughly with acetone, then dried under vacuum at $60^{\circ} \mathrm{C}$ for 12 h before the next cycle. Typically, they were combined, and the same procedure as the ones described above was performed in six reactor, with each containing 68 mg of the recovered $\mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{R}$.

4. Supplementary data

Table S1. Screening of solvents. ${ }^{\text {a,b }}$

Entry	Solvent	$\begin{gathered} \text { Conversion } \\ {[\%]} \\ \hline \end{gathered}$	Yield [\%]		
			3a	4a	5
1	Hexane/ $\mathrm{H}_{2} \mathrm{O}$ (1:1)	>99	81	19	0
2	Toluene/ $\mathrm{H}_{2} \mathrm{O}$ (1:1)	>99	90	10	0
3	THF/ $\mathrm{H}_{2} \mathrm{O}(1: 1)$	>99	94	6	0
4	Ethanol/ $\mathrm{H}_{2} \mathrm{O}(1: 1)$	>99	96	4	0
5	Acetonitrile/ $\mathrm{H}_{2} \mathrm{O}$ (1:1)	>99	97	3	0
6	Methanol/ $\mathrm{H}_{2} \mathrm{O}$ (1:1)	>99	>99	0	0
7	Methanol	95	14	81	0
$8^{\text {c }}$	Methanol	98	0	98	0
9	Methanol/ $/ \mathrm{H}_{2} \mathrm{O}(2: 1)$	96	88	12	0
10	Methanol/ $/ \mathrm{H}_{2} \mathrm{O}(1: 2)$	91	84	16	0
11	$\mathrm{H}_{2} \mathrm{O}$	89	94	6	0

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1}(0.5 \mathrm{mmol})$, $\mathbf{2 a}(0.5 \mathrm{mmol}), \mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{R}(\mathrm{Au} 0.5 \mathrm{~mol} \%)$, Solvent (3 mL), CO (20 bar), $60^{\circ} \mathrm{C}, 2.5 \mathrm{~h} .{ }^{\mathrm{b}} \mathrm{GC}$ yields using anisole as internal standard. ${ }^{\mathrm{c}}$ In the presence of molecular sieves ($4 \AA$).

Table S2. Control Experiments. a,b

Entry	$\mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{R}$	CO	$\mathrm{H}_{2} \mathrm{O}$	Yield of 3a [\%]
1^{c}	F	B	B	0
2^{d}	B	B	B	0
3^{e}	B	B	B	0

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1}(0.5 \mathrm{mmol})$, $\mathbf{2 a}(0.5 \mathrm{mmol}), \mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{R}(\mathrm{Au} 0.5 \mathrm{~mol} \%)$, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v}, 3 \mathrm{~mL}), \mathrm{CO}(20 \mathrm{bar}), 6{ }^{\circ} \mathrm{C}, 2.5 \mathrm{~h} .{ }^{\mathrm{b}}$ GC yields using anisole as internal standard. ${ }^{\mathrm{c}}$ Without $\mathrm{Au} / \mathrm{TiO}_{2}$-R. ${ }^{\mathrm{d}} \mathrm{N}_{2}$ (20 bar), no CO. ${ }^{\mathrm{e}} 3 \mathrm{~mL}$ methanol as solvent in the presence of molecular sieves $(4 \AA)$.

Table S3. Screening of Metal. ${ }^{\text {a,b }}$

Entry	Catalysts	Conversion [\%]	Yield [\%]		
			3a	4a	5
1	$\mathrm{Pd} / \mathrm{TiO}_{2}-\mathrm{R}$	82	1	81	0
2	$\mathrm{Pt} / \mathrm{TiO}_{2}-\mathrm{R}$	84	1	83	0
3	$\mathrm{Ir} / \mathrm{TiO}_{2}$-R	84	8	76	0
4	$\mathrm{Ru} / \mathrm{TiO}_{2}$ - R	80	1	79	0
5	$\mathrm{Rh} / \mathrm{TiO}_{2}$ - R	82	1	81	0

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1}(0.5 \mathrm{mmol}), \mathbf{2 a}(0.5 \mathrm{mmol}), \mathrm{M} / \mathrm{TiO}_{2}-\mathrm{R}$ (metal 0.5 $\mathrm{mol} \%$), MeOH- $\mathrm{H}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v}, 3 \mathrm{~mL}), \mathrm{CO}(20 \mathrm{bar}), 60^{\circ} \mathrm{C}, 2.5 \mathrm{~h} .{ }^{\mathrm{b}} \mathrm{GC}$ yields using anisole as internal standard.

Table S4. Direct imine condensation of 5-HMF with aniline. ${ }^{\text {a }}$

	Catalysts	$\mathrm{r}\left(\mathrm{mmol} \cdot \mathrm{g}^{-1} \cdot \mathrm{~h}^{-1}\right)^{\mathrm{b}}$
	$\mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{R}$	6.504
	$\mathrm{TiO}_{2}-\mathrm{R}$	6.423
2	$\mathrm{TiO}_{2}-\mathrm{A}$	6.423
3	$\mathrm{TiO}_{2}-\mathrm{P}_{2}$	6.260
4	ZrO_{2}	4.715
5	CeO_{2}	5.935
6	$\mathrm{Al}_{2} \mathrm{O}_{3}$	5.285
7	SiO_{2}	5.041

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1}(0.5 \mathrm{mmol}), \mathbf{2 a}(0.5 \mathrm{mmol}), \mathrm{Au}(0.5 \mathrm{~mol} \%), \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ ($1: 1 \mathrm{v} / \mathrm{v}, 3 \mathrm{~mL}$), $\mathrm{N}_{2}(20 \mathrm{bar}), 60^{\circ} \mathrm{C}, 15 \mathrm{~min} .{ }^{\mathrm{b}}$ Initial reaction rates (r) calculated for various catalyst based on GC yields.

Table S5. Reduction of imine to the corresponding aminoalkylfuran with CO over Au catalysts ${ }^{\text {a }}$

Entry	Catalysts	$\mathrm{r}\left(\mathrm{mmol} \cdot \mathrm{g}^{-1} \cdot \mathrm{~h}^{-1}\right)^{\mathrm{b}}$
1	$\mathrm{Au} / \mathrm{TiO}_{2}$-R	0.154
2	TiO_{2}-R	0
3	$\mathrm{Au} / \mathrm{TiO}_{2}$ - A	0.073
4	$\mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{P} 25$	0.137
5	$\mathrm{Au} / \mathrm{ZrO}_{2}$	0.046
6	$\mathrm{Au} / \mathrm{CeO}_{2}$	0.085
7	$\mathrm{Au} / \mathrm{Al}_{2} \mathrm{O}_{3}$	0.005
8	$\mathrm{Au} / \mathrm{SiO}_{2}$	0.002

${ }^{\text {a }}$ Reaction conditions: $4 \mathbf{a}(0.5 \mathrm{mmol})$, $\mathrm{Au}(0.5 \mathrm{~mol} \%)$, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v}, 3$ mL), CO (20 bar), $60^{\circ} \mathrm{C}, 15 \mathrm{~min} .{ }^{\mathrm{b}}$ Initial reaction rates (r) calculated for varitous catalyst based on GC yields.

Figure S1. TEM images and particle size distributions of various supported Au catalysts. (a) $\mathrm{Au} / \mathrm{TiO}_{2}-$ P25, (b) $\mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{A}$, (c) $\mathrm{Au} / \mathrm{Al}_{2} \mathrm{O}_{3}$, (d) $\mathrm{Au} / \mathrm{SiO}_{2}$.

Figure S2. HAADF-STEM images and particle size of (a) $\mathrm{Au} / \mathrm{ZrO}_{2}$, (b) $\mathrm{Au} / \mathrm{CeO}_{2}$.

Figure S3. (a) FESEM image and (b) TEM image of Au° colloid.

Figure $\mathbf{S 4}$. XRD of different $\mathrm{Au} / \mathrm{TiO}_{2}$ catalysts.

Figure S5.. Reaction profile for aminoalkylfuran formation from HMF and aniline under H_{2} atmosphere. (■) conversion of $\mathbf{1},(\boldsymbol{\bullet})$ yield of $\mathbf{3 a},(\mathbf{\Delta})$ yield of $\mathbf{4 a},(\boldsymbol{\nabla})$ yield of $\mathbf{5}$. Reaction conditions: $\mathbf{1}(0.5 \mathrm{mmol}), \mathbf{2 a}(0.5 \mathrm{mmol}), \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v}, 3 \mathrm{~mL}), \mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{R}(\mathrm{Au}: 0.5 \mathrm{~mol} \%), \mathrm{H}_{2}(20 \mathrm{bar}), 60$ ${ }^{\circ} \mathrm{C}$.

Figure S6. 3a yield as a function of time in the leaching test. Reaction conditions: $\mathbf{1}$ (0.5 mmol), 2a (0.5 mmol), $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\left(1: 1 \mathrm{v} / \mathrm{v}, 3 \mathrm{~mL}\right.$), $\mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{R}\left(\mathrm{Au}: 0.5 \mathrm{~mol} \%\right.$), $\mathrm{H}_{2}(20 \mathrm{bar}), 6{ }^{\circ} \mathrm{C}$. The black profile denotes the normal reaction in HMF conversion, while the red profile represents the leaching test in which the catalyst has been removed from the system.(The leached Au of the catalyst-removed liquid
phase of the reacted mixture was undetectable by ICP-AES.)

Figure S7. Reuse of $\mathrm{Au} / \mathrm{TiO}_{2}$-R catalyst in the direct RA of HMF with Aniline. Reaction conditions : $\mathbf{1}$ $(0.5 \mathrm{mmol}), \mathbf{2 a}(0.5 \mathrm{mmol}), \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v}, 3 \mathrm{~mL}), \mathrm{Au} / \mathrm{TiO}_{2}-\mathrm{R}(\mathrm{Au}: 0.5 \mathrm{~mol} \%), \mathrm{H}_{2}(20 \mathrm{bar}), 60^{\circ} \mathrm{C}$, 2.5 h . Note: Time for 6th run is 3 h .

Scheme S1. Tentative mechanism for CO-assisted direct RA of HMF catalyzed by supported gold.

4. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of products

 $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H})$, $4.26(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 153.4,152.7,147.5,129.2,118.1,113.2,108.5$, 107.7, 57.3, 41.4.

(Table 2, 3b). ${ }^{[55] ~}{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{d} 6-\mathrm{DMSO}, 400 \mathrm{MHz}): \delta 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.05$ $(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.35(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{d} 6-\mathrm{DMSO}, 100 \mathrm{MHz}): \delta 195.5,155.2,152.8,151.9$, $130.8,125.7,111.5,108.3,108.0,56.1,26.3,0.5$.

(Table 2, 3c). ${ }^{[\mathrm{s} 5]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.76(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.03$ (br s, 2 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 153.4,152.9,152.5,141.6,114.7,114.6,108.4,107.7,57.3,55.6$, 42.4 .

(Table 2, 3d). ${ }^{[\mathrm{s} 5]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.14-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.67(\mathrm{~m}, 2 \mathrm{H})$, $6.22(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 153.4,152.9,145.5,130.1,127.0,122.4,117.7,110.2,108.7,107.8,57.5,41.5,17.5$.

(Table 2, 3e). ${ }^{[\mathrm{S} 5]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.47(\mathrm{~m}$, $3 \mathrm{H}), 6.20(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 2.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.27(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 153.3,152.9,147.5,139.0,129.1,119.0,114.0,110.3,108.6,107.7$, 57.4, 41.5, 21.6.

(Table 2, 3f). ${ }^{[55]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.76(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.03$ (br s, 2 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 153.4,152.9,152.5,141.6,114.7,114.6,108.4,107.7,57.3,55.6$, 42.4.

(Table 2, 3g). ${ }^{[55]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.90-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.60-6.57(\mathrm{~m}$, $2 \mathrm{H}), 6.18(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 157.3,155.0,153.4,152.5,143.7,115.7,115.5,114.2,114.1,108.6,107.9,57.3,42.1$.

(Table 2, 3h). ${ }^{[55]}{ }^{[1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.61-6.57(\mathrm{~m}$, $2 \mathrm{H}), 6.21(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 2.59(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 153.5,152.3,145.9,129.0,122.8,114.3,108.7,108.0,57.7,41.6$.

(Table 2, 3i). ${ }^{[55]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.58-6.56(\mathrm{~m}$, $2 \mathrm{H}), 6.21(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 153.6,151.9,146.0,132.0,115.1,110.2,108.7,108.2,57.4,41.7$.

(Table 2, 3j). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.28-7.25$ $(\mathrm{m}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.74-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}$, $2 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 153.6,152.2,143.3,129.2,127.7,119.5,117.9,111.6$, 108.7, 108.0, 57.5, 41.2; HRMS (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 238.0629$, observed 238.0629.

(Table 2, 3k). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.08(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.65(\mathrm{~m}$, $2 \mathrm{H}), 6.55-6.53(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 153.6,152.0,148.4,135.0,130.2,118.1,113.0,111.6,108.7,108.2,57.5,41.4 ;$ HRMS (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 238.0629$, observed 238.0613.

(Table 2, 31). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{d} 6-\mathrm{DMSO}, 400 \mathrm{MHz}): \delta 8.03$ (d, $\left.J=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.78$ (d, $J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.37-6.19(\mathrm{~m}, 3 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{d} 6-\mathrm{DMSO}, 100 \mathrm{MHz}): \delta 155.1,152.3,144.8,137.6,135.9,124.0,118.2,108.2,108.0$, 56.1; HRMS (ESI) calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$205.0972, observed 205.0962 .

(Table 2, 3m). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.09(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.5,153.5,153.2,131.2,108.4,107.5,91.2,57.2,42.4,38.4$; HRMS (ESI) calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$208.1081, observed 208.1079.

(Table 2, 3n). ${ }^{[57]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.17(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.11(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 153.7,153.1,139.3,128.4,128.3,127.1,108.1,108.1,57.1,52.6,45.2$.

(Table 2, 3o). ${ }^{[57]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.19(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 2 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.29$ $(\mathrm{m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 153.6,153.4,108.2,107.9,57.3,48.7$, 46.1, 31.7, 20.4, 13.9.

(Table 3, 3p). ${ }^{[\mathrm{S} 8]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.22(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=3.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 2.278(\mathrm{~s}, 6 \mathrm{H}), 2.24(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 154.0,151.8$, 109.5, 108.2, 57.5, 55.8, 44.8.

(Table 3, 3q). ${ }^{[\mathrm{S} 5]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.20(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.24$ (m, 4H), $0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 153.5,152.7,109.1,108.2,57.5,53.5$, 50.2, 28.9, 20.6, 14.0.

(Table 3, 3r). ${ }^{[55]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.21(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.47(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 154.3,150.6,110.0,108.0,66.6,57.1,55.2,53.1$.

(Table 3, 3s). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.04-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.57(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}$, $2 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 153.2,152.4,144.9,129.1,127.0,122.8,116.4,111.3,108.6,107.8,57.5,49.6,48.6,28.0$, 22.2; HRMS (ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$244.1332, observed 244.1330.

(Table 3, 3t). ${ }^{[55]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.21(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.16(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 153.9,151.9,138.0,129.2,128.2,127.1,109.5,108.1,61.1,57.3,53.2,41.8$.

(Table 3, 3u). ${ }^{[\mathrm{S} 5]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.17$ (dd, $\left.J=8.8 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.81$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H})$, $4.43(\mathrm{~s}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 153.3,152.3,149.2,129.1,117.2$, 113.0, 108.5, 108.0, 57.4, 50.0, 38.3 .

(Table 3, 3v). ${ }^{[55]}{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{d} 6-\mathrm{DMSO}, 400 \mathrm{MHz}): \delta 6.79-6.77(\mathrm{~m}, 4 \mathrm{H}), 6.15(\mathrm{~d}, \mathrm{~J}=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}$, $3 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{d} 6-\mathrm{DMSO}, 100 \mathrm{MHz}): \delta 155.0,151.9,151.8,144.0,115.1,114.8,108.6,107.9$, 56.1, 55.6, 50.1, 39.1.

(Scheme 3, 6a). ${ }^{[\mathrm{[s6]}]} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.20(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.15(\mathrm{~d}, J=$
$2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 4 \mathrm{H}), 3.64(\mathrm{~s}, 4 \mathrm{H}), 2.66(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.25$ $(\mathrm{m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 153.8,151.7,109.8,108.2,57.4,53.2$, 49.9, 28.7, 20.5, 13.9.

(Scheme 3, 6b). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.19(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.14(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 4 \mathrm{H}), 3.06(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.25$ $(\mathrm{m}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 153.8,151.8,109.7,108.1,57.2,53.5$, $49.8,31.6,27.1,26.6,22.6,14.0$; HRMS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 322.2013$, observed 322.2010 .

(Scheme 3, 6c). ${ }^{[\mathrm{S} 6]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.36-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.19(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.15(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 4 \mathrm{H}), 3.63(\mathrm{~s}, 4 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 2.80(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 153.6,152.0,138.2,129.1,128.2,127.1,109.7,108.3,57.30,57.2,49.6$.

References:

[S1] Y. Wang, L. Zhang, K. Deng, X. Chen and Z. Zou, J. Phys. Chem. C 2007, 111, 2709-2714.
[S2] S. S. Li, X. Liu, Y. M. Liu, H. Y. He, K. N. Fan and Y. Cao, Chem. Commun., 2014, 50, 56265628.
[S3] L. Yu, X. L. Du, J. Yuan, Y. M. Liu, Y. Cao, H. Y. He and K. N. Fan, ChemSusChem 2013, 6, 4246.
[S4] J. A. Cusumano, Nature, 1974, 247, 456.
[S5] Z. Xu, P. Yan, W. Xu, S. Jia, Z. Xia, B. Chung, Z. C. Zhang, RSC Adv. 2014, 4, 59083-59087.
[S6] Z. Xu, P. Yan, K. Liu, L. Wan, W. Xu, H. Li, X. Liu and Z. C. Zhang, ChemSusChem 2016, 9, 1255-1258.
[S7] A. Cukalovic and C. V. Stevens, Green Chem. 2010, 12, 1201-1206.
[S8] G. Sorba, R. Fruttero, R. Calvino, A. Gasco and M. Orsetti, Arch. Pharm. 1984, 317, 496-501.
$\stackrel{\mathrm{O}}{\mathrm{O}}$

ppm (t1)

OHClill

ppm (t)

ppm (t1)

ppm (t1)

ppm (t1)

OH

ppm (t1)

ppm (t1)
(

O-

ppm (t1)
(

ppm (t1)

