[研究快报]

沉淀还原法制备高性能 CO₂ 加氢合成甲醇 Cu/ ZnO/ Al₂O₃ 催化剂

曹 勇¹, 陈立芳¹, 戴维林¹, 范康年¹, 吴 东², 孙予罕²
(1. 复旦大学化学系, 上海市分子催化与创新材料重点实验室, 上海 200433;
2. 中国科学院山西煤炭化学研究所, 煤转化国家重点实验室, 太原 030001)

关键词 沉淀还原法;碳酸盐共沉淀;液相化学还原;CO₂加氢;甲醇合成 中图分类号 0634 文献标识码 A 文章编号 0251-0790(2003)07-1296-03

由铜基催化剂催化 CO₂+ H₂ 合成甲醇是有效利用 CO₂ 的潜在途径^[1~5]. 但传统的催化剂对该反应 的催化活性及选择性均很低^[3~5],因而寻求具有高活性及高选择性的新型催化剂已成为重要研究课 题^[4,6]. Cu/ZnO 系列催化剂的制备方法和助剂对催化剂的性质及 CO₂ 加氢合成甲醇的反应性能有显 著影响^[6~10],传统的气相还原活化铜基催化剂的过程常伴随强烈的热效应,导致催化剂活化过程存在 耗时长及还原条件难以控制等问题^[11].本文采用沉淀-还原法,用 KBH₄ 溶液对新鲜制备的碳酸盐共 沉淀进行液相化学还原处理,直接得到高活性及高选择性的还原态 Cu/ZnO/Al₂O₃ 甲醇合成催化剂, 并可通过改变催化剂表面 Cu⁺/Cu⁰ 活性物种的相对比例来改善催化剂的活性及选择性.

1 实验部分

1.1 试剂 KBH4为C.R.级,硝酸铜、硝酸锌、硝酸铝和碳酸钠等其它试剂均为分析纯.

1.2 催化剂的制备 将计量的 Cu, Zn 和 Al 硝酸盐混合溶液[n(Cu)/n(Zn)/n(Al) = 45/45/10] 与沉 淀剂 Na²CO³ 溶液并流共沉淀, 然后迅速将计量比的 KBH⁴ 溶液缓慢加入共沉淀浆液中, 剧烈搅拌至 无气泡放出为止, 将黑色沉淀物分别用水及无水乙醇洗涤多次, 于室温真空干燥 4 h, 在 N² 气保护下 于 250 焙烧 6 h 后, 于含有痕量 O²(体积分数 1%) 的 N² 气流中冷至室温即得钝化后的还原态催化剂 [记为 Rx-CZA, x = n(B)/n(Cu)]. 采用上述并流共沉淀法⁵¹制备参比催化剂(记为 CC-CZA).

1.3 催化剂表征 用 Micromerities ASAP 2000 自动吸附仪测定催化剂样品的比表面积;用 Bruker D8 Advance X 射线衍射仪(Cu K α β , 40 kV, 40 mA) 在 250 N² 气氛下原位测试还原态样品的晶相,并估算粒径;用 Perkin Elmer PHI-5000C 型 X 射线光电子能谱仪对样品表面进行 XAES 分析;催化剂在 CO² 加氢中的活性评价方法参见文献[4].

2 结果与讨论

2.1 催化剂结构表征 从经不同还原方法得到的 Cu/ZnO/Al₂O₃ 催化剂的 XRD 谱(图1)可见, Cu⁰的 20为43.2和50.2°, Cu₂O的 20为36.4°, 42.1 及61.3°, ZnO的 20为31.7°, 34.5及36.2°, 传统方法 制备的 CC-CZA 中只见到 Cu 及 ZnO 衍射峰. 沉淀还原法制备的 Rx-CZA 中 36.4°, 42.1 及61.3的3 个特征峰可指认为 Cu₂O 或稳定在 ZnO 晶格中的 Cu⁺. Rx-CZA 样品中未见 CuO 衍射峰,表明体系中 Cu²⁺ 已被 KBH4 完全还原为低价铜物种. 另外, Rx-CZA 样品中仅见到很弱的 ZnO 衍射峰,说明 ZnO 主要以无定形或高分散形式存在. 比较沉淀还原法制备的催化剂中分别对应于 Cu₂O 和 Cu⁰的2 个最 强衍射峰的强度($I_{36.2}/I_{43.4}$,表 1)可发现, Rx-CZA 系列催化剂中单位 Cu⁰ 含 Cu⁺ 量随还原剂用量的增 加迅速减小. 这是因为还原剂用量较少时,仅有部分铜物种被还原为金属铜,其余部分则被还原为

收稿日期: 2003-03-19.

基金项目:上海市科技发展基金(批准号:0112NM076)及煤转化国家重点实验室2002/2003年度开放基金资助.

联系人简介: 曹 勇(1973年出生),男,博士,副教授,从事多相催化和原位光谱研究. E-mail: yongcao@fudan.edu.cn

 $Cu_{2}O.$ 表明在沉淀还原法的制备过程中改变n(B)/n(Cu)比可直接调节催化剂中 Cu^{+} 和 Cu^{0} 的比例. 从表1可看出, 与传统碳酸盐共沉淀法制备的催化 剂相比, 沉淀还原法制备的催化剂具有更大的比表 面积、孔径及孔容. 这是由于在碱式碳酸盐共沉淀 (Cu/ZnO/Al2O3催化剂前驱体)的 KBH4 还原过程 中伴有大量的氢气泡产生,致使催化剂的比表面 积、孔径和孔容也相应增大. 随着 KBH4 用量的增 加,催化剂的金属铜表面积线性增加,但均比传统 催化剂的金属铜表面低. 这是由于在 R_x -CZA 催化 剂表面上生成了一定量的 Cu⁺物种.

为进一步研究 KBH4 用量对催化剂表面 Cu⁺/ Cu° 活性物种相对比例的影响、对还原态样品的表面进行了 XAES 分析. 参考样品 Cu° , $Cu_{2}O$, CC-

able 1	Physicochemical	properties of	various	reduced
abic 1	1 nystoonennut	proparties of	various	Iuuuuu

Cu/ ZnO/ Al ₂ O ₃ catalysts

Catalyst	$S_{\rm BET}/$	Pore volume/	Pore	Scu/	C opper cluster	1 1 a
	$(m^2 \cdot g^{-1})$	(mL · g ⁻¹)	size/ nm	(m ² · g ⁻	1) diameter/ nm	1 36.4/ 1 43.2 ^a
R2-CZA	192	1.13	18.3	6.8	9.8	0.62
R4-CZA	186	1.13	24.8	7.8	9.8	0.31
R6-CZA	155	1.07	22.4	13.5	9.4	0.23
R8-CZA	146	0.61	12.8	14.1	10.0	0.08
CC-CZA ^b	61	1.14	6.6	16.2	13.2	

a. The XRD intensity ratio between the main diffraction peak corresponding to Cu2O and Cu⁰ species; b. the reduced CC-CZA catalyst was obtained under volume

for 6 h. fraction $5\% H_2 / 95\% N_2$ at mosphere at 250

2.2

CZA 和 Rx-CZA 的 XAES 谱图见图 2. Cu° 和 Cu^{+} 的 Cu $2p_{3/2}$ 结合能相差甚小,无法区分,但 Cu⁰ 和 Cu⁺ 的 Cu LM M

电子动能存在明显区别^{12]}. 比较在接近反应条件下的 R_x -CZA, CC-CZA 和标准的 Cu^0 , Cu_{2O} 的 CuLMM XAES 峰可看出,标准的 Cu^{0} , $Cu^{2}O$ 的俄歇电子动能分别位于 918.4 和 916.7 $_{e}V$,这与前文^[13] 结果一致. 从图 2 可看出. 传统碳酸盐共沉淀的催化剂的 LMM 俄歇电子动能只存在 918.4 eV 的一个 峰, 说明 CC--CZA 催化剂表面上的 Cu 主要以 Cu⁰ 形式存在; 而 Rx--CZA 催化剂表面上不仅存在 Cu⁰, 还存在较多的 Cu^{\dagger} . 而且随着 KBH_4 量的增加, Cu^{0} 峰逐渐增加, Cu^{\dagger} 峰逐渐减小, 这进一步证明控制 KBH_4 的用量可调控 Rx -CZA 催化剂表面 Cu^+ 和 Cu^0 物种的相对比例,与前面 XRD 结果完全吻合.

Fig. 3 Methanol yield on various catalysts Reaction conditions: $n(H_2)/n(CO_2) = 3/1$, GHSV= $7\ 200\ h^{-1}$, $p=\ 3.\ 0\ MPa$, time on-stream= 6 h.

Fig. 1 In situ XRD patterns of various reduced Cu/ZnO/Al₂O₃ catalysts

The XRD pattern of CC-CZA catalyst was obtained in situ at 250 under volume fraction 5% H₂/95% N₂ at mosphere.

Fig. 2 XAES spectra of Cu LMM for various standard Cu, Cu₂O samples

reduced Cu/ ZnO/ Al₂O₃ catal ysts and

Fig. 4 Conversion of CO₂ and selectivity to methanol on various catal ysts

The reaction conditions are the same as in Fig. 1.

 $Cu/ZnO/Al_{2O3}$ 催化剂上 CO_2 加氢合成甲醇的活性评价结果(图 3) 看出, R_x -CZA 系列催化剂上不仅 甲醇产率显著增加, 且最佳活性温度也降低了近 10 . 随着 KBH4 用量的增加, 甲醇产率随着催化剂 表面 $n(Cu^+)/n(Cu^0)$ 比的减小而逐渐增加; 但随着 KBH4 使用量的进一步增加, 甲醇产率反而降低. 图 4 比较了不同催化剂上 CO_2 转化率及反应对甲醇的选择性. 其中 R2-CZA 和 R8-CZA 催化剂的活性 较低, 其余 3 种催化剂 CO_2 转化率相近. 虽然 R2-CZA 催化剂的活性最低, 但 R_x -CZA 系列催化剂的 选择性明显高于 CC-CZA, 说明在沉淀还原法制备的催化剂上 CO_2 可更多地选择性转化, 可归结为催 化剂表面上 Cu^+ 和 Cu^0 间的协同作用. 显然, 在催化剂 R6-CZA 表面上, Cu^+ 和 Cu^0 物种之间具有最佳 的协同作用, 因此其催化性能优于其它催化剂.

参考文献

- [1] Inui T., Takeguchi T., Hara H.. Catal. Today[J], 1997, **36**(1): 25-32
- [2] JI Dong-Feng(季东锋), LÜ Xiao-Bing(吕小兵), HE Ren(何 仁) et al. Chem. J. Chinese Universities(高等学校化学学报)[J], 2001, 22(10): 1720-1723
- [3] FU Gang(傅 钢), LÜ Xin(吕 鑫), XU Xin(徐 昕) et al. Chem. J. Chinese Universities(高等学校化学学报)[J], 2002, 23 (8): 1 570-1 573
- [4] Sun Q., Zhang Y. L., Chen H. Y. et al. J. Catal. [J], 1997, 167(1): 92-105
- [5] HONG Zhong-Shan(洪中山), DENG Jing-Fa(邓景发), CAO Yong(曹 勇) et al. Chem. J. Chinese Universities(高等学校化学 学报)[J], 2002, 23(4): 706—708
- [6] Melian-Cabrera I., Lopez Granados M., Fierro J. L. G. J. Catal. [J], 2002, 210: 273-284
- [7] ZHANG Yu-Long(张玉龙), WANG Huan(王 欢), DENG Jing-Fa(邓景发). Chem. J. Chinese Universities(高等学校化学学报)[J], 1994, 15(10): 1 547-1 549
- [8] Wu J. G., Saito M., Mabuse H. Catal. Lett. [J], 2000, 68: 55-58
- [9] Fujita S., Moribe S., Kanamori Y. et al. Appl. Catal A: General[J], 2001, 207: 121-128
- [10] Liaw B. J., Chen Y. Z. Appl. Catal A: General[J], 2001, 206: 245-246
- [11] Bart J. C. J., Sneeden R. P. A.. Catal. Today[J], 1987, 2: 1-124
- [12] Moulder J. F., Stickle W. F., Sobol P. E. et al.. Handbook of X-ray Photoelectron Spectroscopy [M], Minnesota: Perkin Elmer Corporation, Physical Electronics Division, 1992: 29
- [13] Dai W. L., Sun Q., Deng J. F. et d. Appl. Surf. Sci. [J], 2001, 177: 172-179

Preparation of High Performance Cu/ ZnO/ Al₂O₃ Catalyst for Methanol Synthesis from CO₂ Hydrogenation by Coprecipitation–reduction

CAO Yong^{1*}, CHEN Li-Fang¹, DAI Wei-Lin¹, FAN Kang-Nian¹, WU Dong², SUN Yu-Han²

(1. Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fud an University, Shanghai 200433, China; 2. State Key Laboratory of Coal-conversion, Institute of Coal Chemistry of Shanxi, Chinese Academy of Sciences, Taiyuan 030001, China)

Abstract A novel coprecipitation-reduction process has been proposed for preparing highly selective Cu/ ZnO/Al^2O_3 catalysts for methanol synthesis from CO² hydrogenation. Compared to the catalysts prepared by the conventional method, the new catalysts prepared *via* the new method exhibit much higher BET surface area and pore size, much smaller crystallite size and higher catalytic activity and selectivity in CO₂ hydrogenation to methanol. It is also found that the molar ratio of Cu⁺ to Cu⁰ on the surface of the catalyst obtained by coprecipitation-reduction is much higher than that on the reduced catalyst obtained by the conventional method, which could be crucial for its high activity and selectivity for catalytic hydrogenation of CO² to methanol.

Keywords Coprecipitation reduction method; Carbonate coprecipitation; Liquid phase chemical reduction; CO₂ hydrogenation; Methanol synthesis (Ed. : V, X)